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Abstract
We present in a unified and detailed way the nested Bethe ansatz for
open spin chains based on Y(gl(n)),Y(gl(m|n)), Ûq(gl(n)) or Ûq(gl(m|n))

(super)algebras, with arbitrary representations (i.e., ‘spins’) on each site of
the chain and diagonal boundary matrices (K+(u),K−(u)). The nested Bethe
ansatz applies for a general K−(u), but a particular form of the K+(u) matrix.
The construction extends and unifies the results already obtained for open spin
chains based on the fundamental representation and for some particular super-
spin chains. We give the eigenvalues, Bethe equations and the explicit form
of the Bethe vectors for the corresponding models. The Bethe vectors are also
expressed using a trace formula.

PACS numbers: 02.20.Uw, 03.65.Fd, 75.10.Pq
Mathematics Subject Classification: 81R50, 17B37

1. Introduction

The systematic studies of the open spins chains using the R matrices formalism start with the
seminal papers of Cherednik [1] and Sklyanin [2], who generalized to these models the QISM
approach developed by the Leningrad school. They introduced the reflection algebra as the
fundamental ingredient to construct the Abelian Bethe subalgebra and ensure integrability of
the model. This algebra is a subalgebra of the FRT algebra introduced by Leningrad group for
the periodic spin chains (for a review, see e.g. [3] and references therein). The boundary
conditions are encoded in two matrices, K−(u) solution of the reflection equation, see
equation (3.8) below, and K+(u) solution of the dual equation, see equation (3.14). With
these matrices and the standard closed spin chain monodromy matrix, one can construct a
transfer matrix that belongs to the Bethe subalgebra. The existence of this subalgebra leads to
the integrability of the model when the expansion of the transfer matrix as a series provides a
sufficient number of operators in involution. In the following, we consider that this number is
sufficient.
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After proving integrability of the model, the next step is to find the eigenvalues and
eigenvectors of this Bethe subalgebra. It depends on the choice of the boundary matrices.
Focusing on diagonalizable boundary matrices, two main cases can be distinguished: K+(u)

and K−(v) are diagonalizable in the same basis; or not.
Very little is known in the latter case, apart from two recent approaches developed for

the XXZ spin chain and that do not rely on the (nested) algebraic Bethe ansatz [4–6]: in [7],
the reflection equation is replaced by a deformed Onsager algebra (which may be another
presentation of the reflection algebra); and in [8], eigenvalues are computed using generalized
TQ relations when K−(u) and K+(u) obey some relations, or when the deformation parameter
is root of unity.

The first case can be divided into two sub-families, depending whether (i) the
diagonalization matrix is a constant or (ii) depends on the spectral parameter. Again, in the case
(ii), only some results are known from the gauge transformation construction of [9–11], that
allow us to relate non-diagonal solutions to diagonal ones via a Face–vertex correspondence.
Case (i) is the one studied by the analytical Bethe ansatz [12] and corresponds to diagonal
matrices

K−(u) = diag(k−(u), . . . , k−(u)︸ ︷︷ ︸
a−

, k̄−(u), . . . , k̄−(u)︸ ︷︷ ︸
m+n−a−

), (1.1)

K+(u) = diag(k+(u), . . . , k+(u)︸ ︷︷ ︸
a+

, k̄+(u), . . . , k̄+(u)︸ ︷︷ ︸
m+n−a+

). (1.2)

Indeed, using this ansatz, eigenvalues of the transfer matrix can be computed for all (open
or closed) chains based on gl(n) and gl(m|n) (super)algebras and their deformation, and
with arbitrary representations on each site [13–15]. It is in general believed that a nested
(algebraic) Bethe ansatz (NBA) can provide the eigenvectors of the corresponding models.
This was shown in a unified way in [16] for closed spin chains.

We present here the open spin chains case. We will show that the standard NBA approach
does not work in the general case. Keeping a general diagonal solution for K−(u), one needs
to take a+ = 0 or a+ = 1 to perform a complete nested algebraic Bethe ansatz. In this case, the
couple (K−(u),K+(u)) will be called a NABA couple. When one studies an open spin chain
possessing a couple of diagonal matrices (K−(u),K+(u)) that is not of type NABA, one can
start the first step of the NBA approach, but then needs to switch (and end) the calculation
with an analytical Bethe ansatz, as has been done in e.g. [10, 11, 17].

In the present paper, we focus on NABA couples. Performing NBA, we compute the
Bethe ansatz equations, the eigenvalues and the eigenvectors of the corresponding transfer
matrix and show where the constraint a+ = 0 or a+ = 1 is needed in the calculation. Our
presentation considers universal transfer matrices in the sense that the calculation applies
to transfer matrices based on gl(n) and gl(m|n) algebras and their deformation, with any
finite-dimensional irreducible representations of the monodromy matrix. In particular, it
encompasses the preview results obtained for fundamental representations [10, 17, 18].

In addition to the derivation of the Bethe ansatz equations and transfer matrix spectrum,
our main result is the explicit construction of the Bethe vectors. This is reflected in e.g. the
trace formula (see theorem 7.1 at the end of the paper).

The plan of the paper is as follows. In section 2, we introduce the different notations
and R-matrices we use in the paper. Then, in section 3, we present, using the FRT [19]
formalism, the algebras concerned with our approach. They are generalizations of loop
algebras (quantum algebras or Yangians, and their graded versions) and denoted Am|n. They
contain as subalgebras the reflection algebras, denoted Dm|n. We also construct mappings

Dm|n → Dm−1|n → · · · → D1|1 or D2
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that are needed for the nesting. In section 4, we present the finite-dimensional irreducible
representations of Am|n and we compute the form of T −1(u). We also construct the
representations of Dm|n from the Am|n ones. In section 5, as a warm up, we recall the
algebraic Bethe ansatz, which deals with spin chains based on gl(2), gl(1|1) algebras and
their quantum deformations. Then, in section 6, we perform the nested Bethe ansatz in a very
detailed and pedestrian way and up to the end. Finally, in section 7, we study the Bethe vectors
that have been constructed in the previous section, showing connection with a trace formula.
As a conclusion, we discuss our results and present some possible applications or extensions
of our work.

2. Notations

2.1. Graded auxiliary spaces

We use the so-called auxiliary space framework. In this formalism, one deals with the multiple
tensor product of vectorial spaces V ⊗ · · · ⊗ V , and operators (defining an algebra A) therein.
For any matrix-valued operator, A := ∑

ij Eij ⊗ aij ∈ End(V) ⊗ A, we set

Ak :=
∑
ij

I
⊗(k−1) ⊗ Eij ⊗ I

⊗(m−k) ⊗ aij ∈ End(V⊗m) ⊗ A, 1 � k � m, (2.1)

where Eij are elementary matrices, with 1 at position (i, j) and 0 elsewhere. The notation is
valid for complex matrices, taking A := C and using the isomorphism End(V)⊗C ∼ End(V).

We will work on Z2-graded spaces C
m|n. The elementary C

m|n column vectors ei (with
1 at position i and 0 elsewhere) and elementary End(Cm|n) matrices Eij have grade:

[ei] = [i] and [Eij ] = [i] + [j ]. (2.2)

This grading is also extended to the superalgebras we deal with, see section 3.1 below. The
tensor product is graded accordingly:

(aij ⊗ akl)(apq ⊗ ars) = (−1)([k]+[l])([p]+[q])(aij apq ⊗ aklars). (2.3)

The transposition (.)t and trace str(.) operators are also graded:

At =
m+n∑
i,j=1

(−1)[j ]+[j ][i]Eji ⊗ aij , str A =
m+n∑
i=1

(−1)[i]aii for A =
m+n∑
i,j=1

Eij ⊗ aij .

(2.4)

To simplify the presentation we work with the distinguished Z2-grade defined by

[i] =
{

0, 1 � i � m,

1, m + 1 � i � m + n.
(2.5)

Simplification in the expressions follows from the rule [i][j ] = [i] when i � j , which is valid
only for the distinguished grade. The non-graded case is recovered setting n = 0 and [k] = 0.

2.2. Spectral parameter transformations

For spectral parameter u we use the following notations:

ι(u) =
{−u for Y(m|n)

1
u

for Ûq(m|n); ũ =
{

u − (m−n)h̄

2 for Y(m|n)

uq
(m−n)

2 for Ûq(m|n);

u(k) =
{

u + h̄
2 (−1)[k] for Y(m|n)

uq− 1
2 +[k] for Ûq(m|n);

u(k) =
{

u − h̄
2 (−1)[k] for Y(m|n)

uq
1
2 −[k] for Ûq(m|n);

u(k...l) = (· · · (u(k))(k+1) · · ·)(l).
3
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2.3. R-matrices

In what follows, we will deal with different types of matrices R ∈ End(V) ⊗ End(V), all
obeying a (graded) Yang–Baxter equation (written in auxiliary space End(V) ⊗ End(V) ⊗
End(V)):

R12(u1, u2)R13(u1, u3)R23(u2, u3) = R23(u2, u3)R13(u1, u3)R12(u1, u2). (2.6)

The R-matrix satisfies the unitarity relation,

R12(u, v)R21(v, u) = ζ(u, v)I ⊗ I, (2.7)

and crossing unitarity (see (2.11) below for the definition of R̄),

R
t1
12(u, v)M1R̄

t2
12(ι(̃v), ι(̃u))M−1

1 = ζ (u, v)I ⊗ I, (2.8)

where ζ(u, v) and ζ (u, v) are C-functions depending on the model under consideration, M
is a C-valued matrix defined in appendix A for each model and ta is the transposition in the
auxiliary space a. All the R-matrices used here also obey the parity relation:

R12(u, v)t1t2 = R21(u, v). (2.9)

To each R-matrix, one associates an algebra Am|n using the FRT formalism. Below, we focus
on infinite-dimensional associative algebras based on gl(n) and gl(m|n) Lie (super)algebras
and their q-deformation. We denote these algebras An = Y (n) or Ûq(n) and Am|n = Y(m|n)

or Ûq(m|n). We will write also Am|0 = Am. We will encompass all R-matrices of these
algebras writing

R12(u, v) = b(u, v)I ⊗ I +
m+n∑
i,j=1

wij (u, v)Eij ⊗ Eji. (2.10)

All functions are defined in appendix B for each case (one can refer to [16] for details and
references). To define the reflection equation, we need another R-matrix:

R̄12(u, v) = R12(u, ι(v)) = b̄(u, v)I ⊗ I +
m+n∑
i,j=1

w̄ij (u, v)Eij ⊗ Eji. (2.11)

From (2.6) we can deduce the relation between these two R matrices:

R12(u1, u2)R̄13(u1, u3)R̄23(u2, u3) = R̄23(u2, u3)R̄13(u1, u3)R12(u1, u2). (2.12)

We will also use ‘reduced’ R-matrices R(k)(u), deduced from R(u) by suppressing all the
terms containing indices j with j < k:

R
(k)
12 (u, v) = (I(k) ⊗ I

(k))R12(u, v)(I(k) ⊗ I
(k))

= b(u, v)I(k) ⊗ I
(k) +

m+n∑
i,j=k

wij (u, v)Eij ⊗ Eji, (2.13)

where I
(k) =

m+n∑
i=k

Eii, ∀ k. (2.14)

R
(k)
12 (u, v) corresponds to the R-matrix of1 Am+1−k|n. We will also use

R
(k,p)

12 (u, v) = (I(k) ⊗ I
(p))R12(u, v)(I(k) ⊗ I

(p))

= b(u, v)I(k) ⊗ I
(p) +

m+n∑
i,j=max(k,p)

wij (u, v)Eij ⊗ Eji. (2.15)

1 We will write, for a generic k, m− k|n, keeping in mind that one should write 0|n− (k − m) when k > m.
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Note that R
(k,k)
12 (u, v) = R

(k)
12 (u, v). We define the ‘normalized reduced’ R-matrices:

R
(k,p)

12 (u, v) = 1

ap(u, v)
R

(k,p)

12 (u, v) with R
(k,k)
12 (u, v)R

(k,k)
21 (v, u) = I

(k) ⊗ I
(k). (2.16)

3. Algebraic structures

3.1. FRT formalism

The FRT (or RTT) relations [19–21] allow us to generate all the relations between the
generators of the graded unital associative algebra Am|n. We gather the Am|n generators
into a (m + n) × (m + n) matrix acting in an auxiliary space V = C

m|n whose entries are a
formal series of a complex parameter u:

T (u) =
m+n∑
i,j=1

Eij ⊗ tij (u) ∈ End(V) ⊗ A[[u, u−1]]. (3.1)

Since the auxiliary space End(Cm|n) is interpreted as a representation of Am|n, the Z2-grading
of Am|n must correspond to the one defined on End(Cm|n) matrices (see section 2). Hence,
the generator tij (u) has grade [i] + [j ], so that the monodromy matrix T (u) is globally even.
As for matrices, the tensor product of algebras will be graded, as well as between algebras and
matrices,

(Eij ⊗ tij (u))(Ekl ⊗ tkl(v)) = (−1)([i]+[j ])([k]+[l])EijEkl ⊗ tij (u)tkl(v). (3.2)

The ‘real’ generators t
(n)
ij of Am|n appear upon expansion of tij (u) in u. For the (super)

Yangians Y(n) and Y(m|n), tij (u) is a series in u−1:

tij (u) =
∞∑

n=0

t
(n)
ij u−n with t

(0)
ij = δij . (3.3)

In the quantum affine (super)algebra [22, 23] without central charge case, a complete
description of the algebras requires the introduction of two matrices L±(u). However, in
the context of evaluation representations it is sufficient to consider only T (u) = L+(u) to
construct a transfer matrix. Indeed, in an evaluation representation, the choices T (u) = L−(u)

or T (u) = L+(u) − L−(u) lead to the same operator up to a multiplication function. Then,
the RTT relations take the form:

R12(u, v)T1(u)T2(v) = T2(v)T1(u)R12(u, v). (3.4)

Am|n has the following antimorphisms:

Matrix inversion inv: T (u) → T −1(u) =
m+n∑
i,j=1

Eij ⊗ t ′ij (u),

matrix transposition t : T (u) → T t (u) =
m+n∑
i,j=1

(Eij )
t ⊗ tij (u),

spectral parameter inversion ι: T (u) → T (ι(u)).

(3.5)

Am|n has a Hopf algebra structure, with coproduct

�(T (u)) = T (u) ⊗̇ T (u) =
m+n∑

i,j,k=1

(−1)([k]+[i])([k]+[j ])Eij ⊗ tik(u) ⊗ tkj (u). (3.6)

More generally, one defines recursively for L � 2, the algebra homomorphism

�(L+1) = (id⊗(L−1) ⊗ �) ◦ �(L) with �(2) = � and �(1) = id. (3.7)

5
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3.2. Reflection algebra and K(u) matrices

The Am|n algebra is enough to construct a transfer matrix leading to periodic spin chain
models. In the context of open spin chains, one needs another algebra, the reflection algebra
Dm|n, which turns out to be a subalgebra of Am|n. Indeed, physically, one can interpret the
FRT relation as encoding the interaction between the spins of the chain. Hence, it is the
only relation needed to describe a periodic chain. On the other hand, in the case of an open
chain, the interaction with the boundaries has to be taken into account. Following the seminal
paper of Sklyanin [2], we construct the reflection algebra and the dual reflection equation for
the boundary scalar matrices K−(u) and K+(u). We first define the matrix K−(u) to be the
solution of the reflection equation:

R12(u1, u2)K
−
1 (u1)R̄21(u1, u2)K

−
2 (u2) = K−

2 (u2)R̄12(u1, u2)K
−
1 (u1)R21(u1, u2). (3.8)

Depending on the type of R-matrix one considers, solutions to the reflection equation have
been classified: see [24] for the Yangian and super-Yangian cases; in the other cases, partial
classifications have been obtained in e.g. [17, 25]. In all cases, diagonal solutions of the
reflection equations are known. They take the form (up to normalization),

K−(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
diag(u − c−, . . . , u − c−︸ ︷︷ ︸

a

,−u − c−, . . . ,−u − c−︸ ︷︷ ︸
m+n−a

) for Y(m|n),

diag(u2 − c2
−, . . . , u2 − c2

−︸ ︷︷ ︸
a

, u−2 − c2
−, . . . , u−2 − c2

−︸ ︷︷ ︸
m+n−a

) for Ûq(m|n),
(3.9)

where c− is a free complex parameter and a is an integer such that 0 � a � m + n. From this
K−(u) matrix and the monodromy matrix T (u) for closed spin chains, we can construct the
monodromy matrix of the open spin chain:

D(u) = T (u)K−(u)T −1(ι(u)) =
m+n∑
i,j=1

Eij ⊗ dij (u), (3.10)

dij (u) =
m+n∑
a=1

(−1)([i]+[a])([a]+[j ])κa(u)tia(u)t ′aj (ι(u)). (3.11)

From (3.4) and (3.8), we can prove that D(u) also satisfies the reflection equation:

R12(u1, u2)D1(u1)R̄21(u1, u2)D2(u2) = D2(u2)R̄12(u1, u2)D1(u1)R21(u1, u2). (3.12)

This relation defines the reflection algebra Dm|n. The algebra Dm|n is a left coideal [26] of
the algebra Am|n with the coproduct:

�D[2](u) = T[1](u)D[2](u)T −1
[1] (ι(u)) ∈ End(V) ⊗ Am|n ⊗ Dm|n, (3.13)

where [i] labels the two copies of Am|n. This expression allows us to increase the number
of sites for an open spin chain in the same way one does for periodic ones: one acts on the
monodromy matrix with the coproduct and then represents the new copy of algebra on the
new ‘site’.

We also need a dual equation to construct transfer matrices in involution:

R12(u2, u1)
(
K+

1 (u1)
)t1

M−1
1 R̄21(ι(̃u1), ι(̃u2))M1

(
K+

2 (u2)
)t2

= (
K+

2 (u2)
)t2

M1R̄12(ι(̃u1), ι(̃u2))M
−1
1

(
K+

1 (u1)
)t1

R21(u2, u1), (3.14)

where M is given in appendix A. From the property

R12(u1, u2)M1M2 = M1M2R12(u1, u2), (3.15)

6
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one can construct solutions to the dual reflection equation using K−(u) solutions:

(K+(u))t = MK−(ι(̃u)). (3.16)

With D(u) and K+(u) we construct the transfer matrix:

d(u) = str(K+(u)D(u)). (3.17)

The reflection equation and its dual form ensure the commutation relation [d(u), d(v)] = 0.
Thus, d(u) generates (via an expansion in u) a set of L (the number of sites) independent
integrals of motion (or charges) in involution which ensure integrability of the model.

3.2.1. Commutation relations of Dm|n. Projecting (3.12) on the Eij ⊗ Ekl basis we get the
commutation relations for Dm|n:

[dij (u), dkl(v)} = −δkj

m+n∑
a=1

w̄ka(u, v)

b̄(u, v)
(−1)([i]+[l])([a]+[k])dia(u)dal(v)

+ δil

m+n∑
a=1

w̄ia(u, v)

b̄(u, v)
(−1)[l]+[a][k]+[a][j ]+[k][j ]dka(v)daj (u)

− δij

wik(u, v)

b(u, v)

m+n∑
a=1

w̄ia(u, v)

b̄(u, v)
(−1)([a]+[k])([k]+[l])dka(u)dal(v)

+ δij

wil(u, v)

b(u, v)

m+n∑
a=1

w̄ia(u, v)

b̄(u, v)
(−1)([a]+[l])([k]+[l])dka(v)dal(u)

− wik(u, v)

b(u, v)
(−1)([i]+[k])([k]+[l])dkj (u)dil(v)

+
wj l(u, v)

b(u, v)
(−1)([i]+[l])([k]+[l])dkj (v)dil(u), (3.18)

where [x, y} = xy − (−1)[x][y]yx is the graded commutator.

3.3. Embeddings of Dm|n algebras

The algebraic cornerstone for the nested Bethe ansatz is a recursion relation on the Dm|n
algebraic structure. In this section, we present a coset construction for Dm|n algebras (see
theorem 3.1), that extends to the coideal property (see lemma 3.2 and theorem 3.3).

Theorem 3.1. For k = 1, 2, . . . ,m + n − 1, let F (k) be a linear combination of elements
di1j1(u1) · · · diljl

(ul) with all indices ip, jp > k − 1, and let Ik be the left ideal generated by
dij (u) for i > j and j < k. Then, we have the following properties:

dij (u)F (k) ≡ 0 mod Ik, for i > j and j < k, (3.19)

[dii(u), F (k)] ≡ 0 mod Ik, for i < k. (3.20)

Using the functions ψj given in (B.2), we introduce the generators:

D̂(k)(u) =
m+n∑
i,j=k

Eij ⊗ d
(k)
ij (u), (3.21)

7
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d
(k)
ij (u) = dij (u

(1...k−1)) − δij

k−1∑
a=1

q2(k−1−a)−4
∑k−1

l=a+1[l]ψa(u
(a))daa(u

(1...k−1)). (3.22)

They satisfy in Dm|n/Ik the reflection equation for Dm−k+1|n:

R
(k)
12 (u1, u2)D̂

(k)
1 (u1)R̄

(k)
21 (u1, u2)D̂

(k)
2 (u2)

≡ D̂
(k)
2 (u2)R̄

(k)
12 (u1, u2)D̂

(k)
1 (u1)R

(k)
21 (u1, u2) mod Ik. (3.23)

Proof. We first prove relation (3.20) for k = 2, the case k = 1 being trivially satisfied. A
direct calculation from the commutation relations (3.18) of Dm|n leads to (for i, j, l > 1):

dj1(u)d11(v) ≡ 0 mod I2, (3.24)

[dij (u), dl1(v)} ≡ 0 mod I2, (3.25)

[dij (u), d11(v)] ≡ −δij

wi1(u, v)w̄i1(u, v)

b(u, v)b̄(u, v)
[d11(u), d11(v)] mod I2, (3.26)

[d11(u), d11(v)] ≡ 0 mod I2. (3.27)

Gathering all these equations, we obtain relation (3.20) for k = 2.
We now prove relation (3.23) for k = 1, 2. For k = 1, d

(1)
ij (u) = dij (u), the ideal I1 is

empty, and we have the starting algebra Dm|n, so that relation (3.23) for k = 1 just corresponds
to the standard reflection equation. For k = 2, we use the following commutation relations:

[dij (u), d11(v)} ≡ 0 for i, j > 1 and [d11(u), d11(v)} ≡ 0, (3.28)

dj1(u) ≡ 0 for j > 1 mod I2. (3.29)

This implies that for i, j, g, l > 1, we have[
d

(2)
ij (u), d

(2)
gl (v)

} ≡ [dij (u
(1)), dgl(v

(1))} mod I2. (3.30)

Hence, it just remains to prove that the relation can be re-expressed in terms of d(1)
rs (u), r, s > 1,

only. For such a purpose, we compute the commutation relations between di1(u) and d1j (v):

di1(u)d1j (v) ≡ (−1)[j ]([j ]+[i]) w1j (u, v)

b(u, v)
d11(v)dij (u) + δij (−1)[j ]+[1] w̄i1(u, v)

b̄(u, v)
d11(v)d11(u)

− (−1)[1]+[j ][i] wi1(u, v)

b(u, v)
d11(u)dij (v)

−
m+n∑
a=1

(−1)([i]+[j ])[a] w̄1a(u, v)

b̄(u, v)
dia(u)daj (v). (3.31)

Using this equation, one can compute2 for any polynomial function f ([a], [b], [c], [d]):
m+n∑
a=1

(−1)f ([i],[l],[a],[g]) w̄ga(u
(1), v(1))

b̄(u(1), v(1))
dia(u

(1))dal(v
(1))

≡
m+n∑
a=2

(−1)f ([i],[l],[a],[g]) w̄ga(u, v)

b̄(u, v)
dia(u

(1))dal(v
(1))

− (−1)[1]+[g][i]+f ([i],[l],[1],[g]) wi1(u, v)w̄g1(u
(1), v(1))

b(u, v)ā1(u(1), v(1))
d11(u

(1))dil(v
(1))

2 To obtain this equation, we started from the l.h.s. of (3.32), and changed the term a = 1 according to (3.31).
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+ (−1)[l]([l]+[i])+f ([i],[l],[1],[g]) w1l (u, v)w̄g1(u
(1), v(1))

b(u, v)ā1(u(1), v(1))
d11(v

(1))dil(u
(1))

+ δil(−1)[1]+[i]+f ([i],[l],[1],[g]) w̄i1(u
(1), v(1))w̄g1(u

(1), v(1))

b̄(u(1), v(1))ā1(u(1), v(1))
d11(u

(1))d11(v
(1)). (3.32)

Now using (3.28), we can write the commutation relations for the new operator d
(1)
ij (u) with

(3.18). We extract the term di1(u)d1j (v) of each sum and using (3.32) we are left with only
operators d11(u) and dij (u) with i, j �= 1. We use the transformation

d
(2)
ij (u) = d

(1)
ij (u(1)) − δijψ1(u

(1))d
(1)
11 (u(1)), (3.33)

and we obtain the desired commutation relation plus some unwanted terms. It is a
straightforward calculation to find that the unwanted terms cancel for all values of i, j, g, l ∈
{2, . . . ,m + n}. This proves that d̂ij (u) has the same commutation relation as (3.18) with a
sum starting at 2 for i, j > 1. Thus, theorem 3.1 is proved for k = 2.

For k > 2, we first remark that one has Ik ⊂ Ik+1, so that one can use the results of step
k in the proof of step k + 1. Then, the calculation becomes equivalent to the k = 2 case. The
transformation of D operator for each step is

D(k)(u) = I
(k)D̂(k−1)(u)I(k), k > 1 (3.34)

D̂(k)(u) = I
(k)
(
D̂(k−1)(u(k−1)) − ψk−1(u

(k−1))d
(k−1)
kk (u(k−1))I(k)

)
I
(k), k > 1 (3.35)

D(1)(u) = D̂(1)(u) = I
(1)D(u)I(1) = D(u). (3.36)

A direct calculation using identity (B.10) gives the form (3.22). �

Lemma 3.2. For k = 1, 2, . . . ,m + n − 1, let G(k) be a linear combination of elements,

ti1j1(u1)t
′
g1l1

(ι(u1)) · · · tipjp
(up)t ′gplp

(ι(up)),

with all indices ir , jr , gr , lr > k − 1, and let Jk be the left ideal generated by {tij (u), t ′ij (u)}
for i > j and j < k. Then, we have the following properties:

tij (u)G(k) ≡ 0 mod Jk for i > j and j < k, (3.37)

t ′ij (u)G(k) ≡ 0 mod Jk for i > j and j < k, (3.38)

[tii (u),G(k)] ≡ 0 mod Jk for i < k, (3.39)

[t ′ii (u),G(k)] ≡ 0 mod Jk for i < k. (3.40)

Moreover, the generators,

T (k)(u) =
m+n∑
i,j=k

Eij ⊗ t
(k)
ij (u) and (T −1)(k)(ι(u)) =

m+n∑
i,j=k

Eij ⊗ t
′(k)
ij (ι(u)), (3.41)

t
(k)
ij (u) = tij (u

(1...k−1)) and t
′(k)
ij (ι(u)) = t ′ij (ι(u

(1...k−1))), (3.42)

satisfy in Am|n/Jk the relation:(
T −1

2

)(k)
(ι(u))R

(k)
12 (u, ι(u))T

(k)
1 (u) ≡ T

(k)
1 (u)R

(k)
12 (u, ι(u))

(
T −1

2

)(k)
(ι(u)) mod Jk. (3.43)

Proof. As for theorem 3.1, the case k = 1 is just the definition of the algebra and relations
(3.37)–(3.40) do not exist.
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We prove the case k = 2, the proof for the other cases being similar. From the relation

T −1
2 (v)R12(u, v)T1(u) = T1(u)R12(u, v)T −1

2 (v) (3.44)

one obtains by projecting on Eij ⊗ Egl :

[t ′ij (u), tgl(v)} = δil

m+n∑
a=1

(−1)([j ]+[a])([g]+[a]) wal(v, u)

b(v, u)
tga(v)t ′aj (u)

− δjg

m+n∑
a=1

(−1)([g]+[a])([i]+[l]) wga(v, u)

b(v, u)
t ′ia(u)tal(v). (3.45)

From (3.45) we find for i, j, g, l �= 1:

t ′i1(u)t11(v) ≡ 0 mod J2; [t ′ij (u), tg1(v)} ≡ 0 mod J2 (3.46)

tg1(v)t ′11(u) ≡ 0 mod J2; [t ′i1(u), tgl(v)} ≡ 0 mod J2. (3.47)

We also need the following commutation relation proved in [16]:

[tij (u), tk1(v)} ≡ 0 mod J2. (3.48)

In the same way, one can compute

[t ′ij (u), t ′k1(v)} ≡ 0 mod J2. (3.49)

Starting from the left-hand side of relations (3.37)–(3.40), a recursive use of commutation
relations (3.46)–(3.49) proves that one gets only terms with ta1(u) and t ′a1(u) on the right, so
that properties (3.37)–(3.40) hold for k = 2.

To prove (3.43), we start again with relation (3.45) with i, j, g, l �= 1 and extract the first
term in the summation:

[t ′ij (u), tgl(v)} = δil

m+n∑
a=2

(−1)([j ]+[a])([g]+[a]) wal(v, u)

b(v, u)
tga(v)t ′aj (u)

− δjg

m+n∑
a=2

(−1)([g]+[a])([i]+[l]) wga(v, u)

b(v, u)
t ′ia(u)tal(v)

+ δil(−1)[j ][g]+[1] w1l (v, u)

b(v, u)
tg1(v)t ′1j (u)

− δjg(−1)[g]([i]+[l]) wg1(v, u)

b(v, u)
t ′i1(u)t1l(v). (3.50)

Inserting in this equation the relations (valid modulo J2):

t ′i1(u)t1l (v) ≡ −
m+n∑
a=2

(−1)[a]([i]+[l]) w1a(v, u)

a1(v, u)
t ′ia(u)tal(v) + δil

w1l (v, u)

a1(v, u)
t ′11(u)t11(v), (3.51)

(−1)[1]+[i][j ]ti1(v)t ′1j (u) ≡ −
m+n∑
a=2

(−1)([a]+[j ])([a]+[i]) wa1(v, u)

a1(v, u)
tia(v)t ′aj (u)

+ δji

w1l (v, u)

a1(v, u)
t ′11(u)t11(v), (3.52)

[t ′11(u), t11(v)] ≡ 0, (3.53)

and making the transformation u → ι(u(1)) and v → u(1) it is straightforward to end the
proof. For k > 2 we use the same argument as in the proof of theorem 3.1. �

10
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Theorem 3.3. In the coset Am|n/Jk ⊗ Dm|n/Ik , the coproduct takes the form

�
(
D

(k)
[1] (u)

) ≡ T
(k)

[2] (u)D
(k)
[1] (u)

(
T −1

[2]

)(k)
(ι(u)) mod Jk, (3.54)

where [1] labels the space Dm|n/Ik, [2] labels the space Am|n/Jk and � is the coproduct of
Am|n.

Proof. As in theorem 3.1, we just do the proof for k = 2, the other cases follow. From

�(dij (u
(1)) − δijψ1(u

(1))d11(u
(1))) =

m+n∑
a,b=1

{tia(u(1))t ′bj (ι(u
(1))) ⊗ dab(u

(1))

− δijψ1(u
(1))t1a(u

(1))t ′b1(ι(u
(1))) ⊗ dab(u

(1))},
and using the quotient I2 and J2, it follows:

�(dij (u
(1)) − δijψ1(u

(1))d11(u
(1))) =

m+n∑
a,b=2

tia(u
(1))t ′bj (ι(u

(1))) ⊗ dab(u
(1))

+ ti1(u
(1))t ′1j (ι(u

(1))) ⊗ d11(u
(1)) − δijψ1(u

(1))t11(u
(1))t ′11(ι(u

(1))) ⊗ d11(u
(1)).

Using the commutation relation (3.45) for the second term we find

�(dij (u
(1)) − δijψ1(u

(1))d11(u
(1)))

=
m+n∑
a,b=2

tia(u
(1))t ′bj (ι(u

(1))) ⊗ (dij (u
(1)) − δijψ1(u

(1))d11(u
(1))).

Theorem 3.1 and lemma 3.2 allow us to generalize this result to each k. �

4. Highest weight representations

The fundamental point in using the ABA is to know a pseudo-vacuum for the model. In the
mathematical framework it is equivalent to knowing a highest weight representation for
the algebra which underlies the model. Since the generators of the algebra Dm|n can be
constructed from the Am|n ones, see equation (3.10), we first describe how to construct
highest representations for the infinite-dimensional (graded) algebras Am|n from the highest
weight representation of the finite-dimensional Lie subalgebras gl(m|n) or Uq(m|n). Next,
we show how these representations induce (for diagonal K−(u) matrix) a representation for
Dm|n with same highest weight vector.

4.1. Finite-dimensional representations of Am|n

Definition 4.1. A representation of Am|n is called the highest weight if there exists a nonzero
vector � such that

tii (u)� = λi(u)� and tij (u)� = 0 for i > j, (4.1)

for some scalars λi(u) ∈ C[[u−1]]. λ(u) = (λ1(u), . . . , λm+n(u)) is called the highest weight
and � the highest weight vector.

It is known (see [27–30]) that any finite-dimensional irreducible representation of Am|n is the
highest weight and that it contains a unique (up to scalar multiples) highest weight vector. To
construct such representations, one uses the evaluation morphism, which relates the infinite-
dimensional algebra Am|n to its finite-dimensional subalgebra Bm|n (see [16]). From the
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evaluation morphism eva (with a ∈ C) and a highest weight representation πμ of Bm|n (where
μ is a Bm|n highest weight), one can construct a highest weight representation of Am|n, called
the evaluation representation:

ρμ
a = eva ◦ πμ : Am|n

eva−→ Bm|n
πμ−→ Vλ. (4.2)

The weight of this evaluation representation is given by λ(u) = (λ1(u), . . . , λm+n(u)), with

λj (u) =
⎧⎨⎩u − a − (−1)[j ]h̄μj for Y(m|n)

(−1)[j ]
(u

a
ηjq

μj − a

u
ηjq

−μj

)
for Ûq(m|n)

j = 1, . . . ,m + n, (4.3)

where μj , j = 1, . . . ,m + n are the weights of the Bm|n representation. More generally, one
constructs the tensor product of evaluation representations using the coproduct of Am|n,(⊗L

i=1ρ
μ〈i〉
ai

) ◦ �(L)(T (u)) = ρμ〈1〉
a1

(T (u)) ⊗̇ ρμ〈2〉
a2

(T (u)) ⊗̇ · · · ⊗̇ ρμ〈L〉
aL

(T (u)), (4.4)

where μ〈i〉 = (
μ

〈i〉
1 , . . . , μ

〈i〉
m+n

)
, i = 1, . . . , L, are the weights of the Bm|n representations.

This provides a Am|n representation with weight,

λj (u) =
L∏

i=1

λ
〈i〉
j (u), j = 1, . . . ,m + n, (4.5)

where λ
〈i〉
j (u) have the form (4.3).

4.2. Representations of T −1(u) from T (u)

The construction of the finite-dimensional representations for T −1(u) in relation with the T (u)

ones is different for the gl(n) and the super symmetric cases gl(m|n). For the gl(n) algebra, the
representations are constructed using the quantum determinant q det(T (u)) and the comatrix
T̂ (u) see [31], while for the gl(m|n) superalgebra, one uses the Liouville contraction, the
quantum Berezinian Ber(T (u)) [32] and the crossing symmetry of T (u).

We define for this section:

u{k} =
{

u + h̄k

uq−k
and fij (σ ) =

{
(−1)i+j+1s(σ ) for Y(n) and Y(m|n)

(−q)l(σ )+i−j for Ûq(n) and Ûq(m|n),
(4.6)

where s(σ ) is the sign of the permutation σ and l(σ ) its length.

An case. We use the An quantum determinant q det(T (u)) which generates the centre of An,

q det(T (u)) =
∑
σ∈Sn

f00(σ )

n∏
i=1

tiσ (i)(u{i−n}), (4.7)

and the quantum comatrix,

T̂ (u) =
∑
ij=1

Eij ⊗ t̂ij (u) (4.8)

t̂ij (u) =
∑
σ∈Sn

fij (σ )−1t1aσ(1)
(u{2−n}) · · · ti−1aσ(i−1)

(u{i−n})ti+1aσ(i)
(u{i+1−n}) · · · tnaσ(n−1)

(u)

with (a1, . . . , an−1) = (1, . . . , j − 1, j + 1, . . . , n) (4.9)

which obeys T̂ (u)T (u{1−n}) = q det(T (u)). This equation allows to relate T −1(u) to T̂ (u):

T −1(u) =
m+n∑
i,j=1

Eij ⊗ t ′ij (u) = T̂ (u{n−1})
q det(T (u{n−1}))

. (4.10)
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To write the form of the highest weight irreducible representation for T −1(u), one first
computes the action of q det(T (u)) and t̂ii (u) on �:

q det(T (u))� =
n∏

i=1

λi(u{i−n})�, (4.11)

t̂ii (u)� = λ1(u{2−n}) · · · λi−1(u{i−n})λi+1(u{i+1−n}) · · · λn(u)�. (4.12)

Then, since t̂ij (u)� = 0 for i > j , one finds

t ′ii (u)� = λ′
i (u)� with λ′

i (u) =
(

i−1∏
k=1

λk(u{k})
λk(u{k−1})

)
1

λi(u{i−1})
,

t ′ij (u)� = 0 if i > j.

(4.13)

Am|n case. First, one has to prove that � is a highest weight vector of T −1(u). The proof is
done in [15] for the super-Yangian case. The quantum superalgebra Ûq(m|n) case is done in
the following theorem:

Theorem 4.2. For the quantum superalgebra Ûq(m|n), the highest weight vector � of T (u)

is also a highest weight vector of T −1(u).

t ′ii (u)� = λ′
i (u)� and t ′ij (u)� = 0 if i > j. (4.14)

Proof. To prove this theorem we must use the commutation relation between the modes of
T (u) = L+(u) and T −1(u) = (L+)−1(u) = ∑m+n

i,j=1 L̄+
ij (u). As L+(u) is a formal Taylor series

in u, its inverse is also a formal Taylor series of u:

L+
ij (u) =

∞∑
n=0

L
(n)
ij u2n and L̄+

ij (u) =
∞∑

n=0

L̄
(n)
ij u2n. (4.15)

Projecting the commutation relation (3.45) on the modes we find the following relation:[
L̄

(p)

ij ;L
(q)

kl

} = δil

m+n∑
a=1

(−1)([a]+[j ])([a]+[k])

(
c+
al

p∑
b=0

L
(q+b)

ka L̄
(p−b)

aj − c−
al

p∑
b=1

L
(q+b)

ka L̄
(p−b)

aj

)

− δjk

m+n∑
a=1

(−1)([i]+[l])([a]+[k])

(
c+
ka

p∑
b=0

L̄
(p−b)

ia L
(q+b)

al − c−
ka

p∑
b=1

L̄
(p−b)

ia L
(q+b)

al

)
,

with c±
al = q±(1−2[l]) − qsign(l−a)(1−2[l]). (4.16)

From the relation T (u)T −1(u) = T −1(u)T (u) = I we find
m+n∑
a=1

p∑
q=0

(−1)([i]+[a])([a]+[j ])L̄
(q)

ia L
(p−q)

aj =
m+n∑
a=1

p∑
q=0

(−1)([i]+[a])([a]+[j ])L
(q)

ia L̄
(p−q)

aj = δij δ0p.

(4.17)

We also know that L
(0)
ij = 0 for i < j and that L

(0)
ii has an inverse. First we prove the same

properties for L̄(0). From (4.17), we deduce
m+n∑
a=1

(−1)([i]+[a])([a]+[j ])L
(0)
ia L̄

(0)
aj = 0 for i �= j. (4.18)
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As L
(0)
ii �= 0, we find for i = 1, L̄

(0)
1j = 0. By induction on i, we find L̄

(0)
ij = 0 for i < j . Then,

m+n∑
a=1

(−1)[i]+[a]L
(0)
ia L̄

(0)
ai =

m+n∑
a=1

(−1)[i]+[a]L̄
(0)
ia L

(0)
ai = 1 (4.19)

implies that L
(0)
ii L̄

(0)
ii = L̄

(0)
ii L

(0)
ii = 1.

Now, we have to prove that � is a highest weight vector of L̄
(p)

ij . We already know that

L
(p)

ij � = 0 for i < j and L
(p)

ii � = λ
(p)

i �. (4.20)

We can write from (4.17) with i > j :
p∑

q=0

λ
(p−q)

j L̄
(q)

ij � = −
j−1∑
a=1

p−1∑
q=0

(−1)([k]+[a])([i]+[j ])L̄
(q)

ia L
(p−q)

aj �. (4.21)

To prove that L
(p)

ij � = 0 for i < j , we use a double induction, on p and on i. We already

proved directly that L̄
(0)
ij � = 0, i < j . For p = 1 we have

λ
(0)
j L̄

(1)
ij � = −

j−1∑
a=1

(−1)([k]+[a])([i]+[j ])L̄
(0)
ia L

(1)
aj � = −

j−1∑
a=1

(−1)([k]+[a])([i]+[j ])
[
L̄

(0)
ia , L

(1)
aj

}
�.

Using the commutation relations (4.16) we find[
L̄

(0)
ia , L

(1)
aj

}
� = −q−1+2[a](q − q−1)(−1)([i]+[j ])[a]

a−1∑
b=1

(−1)[b]([i]+[b]+[j ])
[
L̄

(0)
ib , L

(1)
bj

}
�. (4.22)

We get a triangular system in a, so that the property is proved for p = 1 by induction on a.
For a general p we use the same method.

Finally, we prove that L̄
(p)

ii � = λ̄
(p)

i �. For p = 0, from the equation L̄
(0)
ii L

(0)
ii = 1, we

already know that L̄
(0)
ii � = (

λ
(0)
i

)−1
�. We prove the property of the general case by a double

induction, assuming the property is true for p − 1 and starting from

p∑
q=0

λ
(p−q)

i L̄
(q)

ii � =
⎛⎝δ0,p −

i−1∑
a=1

p−1∑
q=0

(−1)[i]+[a]
[
L̄

(q)

ia , L
(p−q)

ai

}⎞⎠�. (4.23)

From the commutation relation we obtain[
L̄

(q)

ia , L
(p−q)

ai

}
� =

a∑
b=1

(
c−
bi

q∑
r=1

[
L̄

(q−r)

ib , L
(p−q+r)

bi

}− c+
ab

q∑
r=0

[
L̄

(q−r)

ib , L
(p−q+r)

bi

})
�,

[
L̄

(0)
ia , L

(q)

ai

}
� = −q−1+2[a](q − q−1)(−1)[a]

a−1∑
b=1

[
L̄

(0)
ib , L

(q)

bi

}
� = 0.

(4.24)

From the second equation, equal to zero by induction on a, we find[
L̄

(q)

ia , L
(p−q)

ai

}
� = −q−1+2[a](q − q−1)(−1)[a]

a−1∑
b=1

q∑
r=1

[
L̄

(q−r)

ib , L
(p−q+r)

bi

}
�. (4.25)

By induction on q then on a we find the last equality equals zero. Thus, we have the relation:
p∑

q=0

λ
(p−q)

i L̄
(q)

ii � = δ0,p�. (4.26)

It follows that L̄
(q)

ii � = λ̄
(q)

i � with λ̄
(q)

i rational function of λ
(q)

i , . . . , λ
(0)
i . �

14
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Second, we use the crossing symmetry of the monodromy matrix Ta(u) and the quantum
Berezinian to give an explicit expression of the weight of T −1(u). Let us introduce

T ∗(u) = (T −1(u))t . (4.27)

The crossing symmetry takes the form for Am|n (see [15, 33]):

(T t (u))−1 = 1

Z(u{n−m})
MUT ∗(u{n−m})UM−1 with U =

m+n∑
i=1

(−1)[i]Eii, (4.28)

where the Liouville contraction Z(u) lies in the centre of Am|n. It can be written in terms of
the Berezinian, that itself relies on the quantum determinant (4.7):

Ber(T (u)) = q det(T (m)(u{m−n−1}))q̃ det((T ∗)(n)(u{−n}))

=
m∏

i=1

λi(u{i−n−1})
n∏

i=1

λ′
i+m(u{i−n−1}) (4.29)

Z(u) = Ber(T (u{1}))
Ber(T (u))

with q̃ det(T (n)(u))

=
∑
σ∈Sn

f00(σ )−1
n∏

i=1

ti+m,σ (i)+m(u{n−i}), (4.30)

with T (k)(u) = I
(k)T (u)I(k),∀ k and I

(k) defined in (2.14). In A0|n ⊂ Am|n, we have

(T (n)(u)t )−1 = z(u)MT (n)∗(u{n})M−1, (4.31)

where z(u), theA0|n Liouville contraction, can be written in terms of the quantum determinant:

z(u) = q̃ det(T (n)(u{1}))
q̃ det(T (n)(u))

=
n∏

i=1

λi+m(u{n−i+1})
λi+m(u{n−i})

. (4.32)

Lemma 4.3. For the superalgebra Am|n, we have

t ′ii (u)� = λ′
i (u)� and t ′ij (u)� = 0 for i > j,

with λ′
i (u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

λi(u{i−1})

(
i−1∏
k=1

λk(u{k})
λk(u{k−1})

)
for 1 � i � m

Z(u)

λi(u{2m−i})

(
m+n∏
k=i+1

λk(u{2m+1−k})
λk(u{2m−k})

)
for m + 1 � i � m + n.

(4.33)

Proof. From theorem 4.2, we have

T −1(u)� =
(

T −1(u)(m) ∗
0 T −1(u)(n)

)
�, (4.34)

T ∗(u)� =
(

T ∗(u)(m) 0
∗ T ∗(u)(n)

)
�. (4.35)

Multiplying (4.34) by T (u) and (4.35) by UM−1T t (u{n−m})MU , one obtains

T (m)(u)(T −1)(m)(u)� = �

and

(M−1)(n)(T t )(n)(u{n−m})M(n)(T ∗)(n)(u)� = Z(u)�.
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Finally, upon multiplication by T (m)(u)−1 and (T t )(n)(u)−1, one is led to

(T −1)(m)(u)� = (T (m))−1(u)�

and

(T ∗)(n)(u)� = Z(u)z(u{m−n})(T (n))∗(u{m})� (4.36)

that gives the lemma. �

4.3. Finite-dimensional representations of Dm|n from Am|n ones

For the study of the representations of the reflection algebra, we follow essentially the lines
given in [26] for the reflection algebra based on the Yangian of gl(n) and in [15] for the
reflection algebra based on the super-Yangian of gl(m|n).

Theorem 4.4. If � is a highest weight vector of Am|n, with eigenvalue (λ1(u), . . . , λm+n(u)),
then, when K−(z) = diag

(
κ1(u), . . . , κm+n(u)

)
,� is also a highest weight vector for Dm|n,

dij (u)� = 0 for i > j, and dii(u)� = 
i(u)�, (4.37)

with eigenvalues:


i(u) = Ki (u)λi(u)λ′
i (ι(u)) +

i−1∑
k=1

ψk(u
(1...k−1))Kk(u)λk(u)λ′

k(ι(u)), (4.38)

Ki (u) = κi(u) −
i−1∑
k=1

κk(u)
wik(u

(1...k−1), ι(u(1...k−1)))

ai−1(u(1...i−2), ι(u(1...i−2)))
qi−k−1−2

∑i−1
l=k+1[l]. (4.39)

Proof. First, we prove dij (u)� = 0 for j < i. One computes

dij (u)� =
j−1∑
a=1

(−1)([i]+[a])([a]+[j ])κa(u)tia(u)t ′aj (ι(u))� (4.40)

= −
j−1∑
a=1

κa(u)[t ′aj (ι(u)), tia(u)}�.

Applying the super-commutator on � with the constraint a � j < i, one obtains

[t ′aj (u), tia(ι(u))}� = −
j−1∑
b=1

wba(u, ι(u))

b(u, ι(u))
[t ′bj (ι(u)), tib(u)}�. (4.41)

Considering the case a = j , one obtains
j−1∑
b=1

[t ′bj (ι(u)), tib(u)}� = 0. (4.42)

Plugging this result in the former equation, we obtain

[t ′aj (u), tia(ι(u))}� = wa−1,a(u, ι(u)) − wa+1,a(u, ι(u))

aa(u, ι(u)) − wa−1,a(u, ι(u))

j−1∑
b=a+1

[t ′bj (ι(u)), tib(u)}�. (4.43)

By iteration (a = j − 1, . . . , a = 1) one finds

[t ′aj (u), tia(ι(u))}� = 0, (4.44)
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which proves that dij (u)ω = 0, j < i.
Second, we prove dii(u)� = 
i(u)�. Acting on � with dii(u) one obtains

dii(u)� = κi(u)λi(u)λ′
i (ι(u))� +

i−1∑
a=1

(−1)[i]+[a]κa(u)tia(u)t ′ai(ι(u))�. (4.45)

One can restrict this problem to the computation of tia(u)t ′ai(ι(u))� for i > a in terms of the
eigenvalues λi(u)λ′

i (ι(u)). From the relation (3.45), we obtain

(−1)[i]+[a]tia(u)t ′ai(ι(u))� = −
i∑

b=1

(−1)[i]+[b] wba(u, ι(u))

b(u, ι(u))
tib(u)t ′bi(ι(u))�

+
a∑

b=1

wib(u, ι(u))

b(u, ι(u))
t ′ab(ι(u))tba(u)�. (4.46)

Applying (3.45) on � for i = j = k = l, one finds the identity:
i−1∑
b=1

wib(u, ι(u))

b(u, ι(u))
t ′ib(ι(u))tbi(u)� =

i−1∑
b=1

(−1)[i]+[b] wbi(u, ι(u))

b(u, ι(u))
tib(u)t ′bi(ι(u))�.

Let Fij = tij (u)t ′ji(ι(u))�. Using the two previous equations, one finds for j < i:

Fij = (−1)[i]+[j ] wij (u, ι(u))

b(u, ι(u))
(Fjj − Fii) +

j−1∑
a=1

(−1)[i]+[a] wai(u, ι(u))

b(u, ι(u))
Fja

−
i−1∑
a=1

(−1)[j ]+[a] waj (u, ι(u))

b(u, ι(u))
Fia. (4.47)

It is then easy (but lengthy) to show that the solution is

Fij = (−1)[i]+[j ]mij (u
(1...j−1), ι(u(1...j−1)))

[
Fjj

aj (u(1...j−1), ι(u(1...j−1)))

− q(i−j−1−2
∑i−1

a=j+1[a])

ai−1(u(1...i−2), ι(u(1...i−2)))
Fii

−
i−1∑

a=j+1

mia(u
(1...a−1), ι(u(1...a−1)))q(a−j−1−2

∑a−1
l=j+1[l])

aj (u(1...a−1), ι(u(1...a−1)))aa−1(u(1...a−2), ι(u(1...a−2)))
Faa

]
. (4.48)

One must use relations (B.7)–(B.9) between functions. Plugging the value of Fik into
equation (4.45), after some rearrangement one gets the eigenvalues 
i(u). �

5. Algebraic Bethe ansatz for Dm|n with m + n = 2

In this section, we recall the framework of the algebraic Bethe ansatz (ABA) [34] introduced
in order to compute transfer matrix eigenvalues and eigenvectors. For m + n = 2, one can
consider three different algebras: D0|2,D2|0 and D1|1. The method follows the same steps
as the closed chain case, up to a preliminary step. We write the monodromy matrix in the
following matricial form:

D(u) =
(

d11(u) d12(u)

d21(u) d22(u)

)
. (5.1)

17



J. Phys. A: Math. Theor. 42 (2009) 205203 S Belliard and E Ragoucy

In the open case the transfer matrix have the form:

d(u) = str
(
K+

a (u)Da(u)
) = (−1)[1]m1k(u)d11(u) + (−1)[2]m2d22(u), (5.2)

K+(u) = MK(u). (5.3)

The matrix K is constructed from the solution (3.9):

K(u) =
{

I for a+ = 0
diag(k(u), 1) for a+ = 1

with k(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−u− m−n

2 h̄ − c+

u + m−n

2 h̄ − c+
for Y(m|n)

u−2q−(m−n) − c2
+

u2qm−n − c2
+

for Ûq(m|n).

(5.4)

Remark that for the particular case m+n = 2, the form chosen for K+(u) exhausts all possible
diagonal solutions. We recall that for K−(u) we keep the general diagonal solution (3.9). Let
� be the pseudo-vacuum state:

d11(u)� = 
1(u)�, d22(u)� = 
2(u)�, d21(u)� = 0. (5.5)

Looking at the commutation relations (3.18) for m + n = 2, one can see that the d22(u)d12(v)

exchange relation is not symmetric to the d11(u)d12(v) one. In order to compensate this
asymmetry, we perform a change of basis and a shift,

d11(u
(1)) = d̂11(u), d12(u

(1)) = d̂12(u), d21(u
(1)) = d̂21(u), (5.6)

d22(u
(1)) = d̂22(u) + ψ1(u

(1))d̂11(u). (5.7)

The function ψ(u) is chosen in such a way that it leads to symmetric exchange relations:

d̂12(u)d̂12(v) =
{

d̂12(v)d̂12(u), for D2|0,D0|2
h(u, v)d̂12(v)d̂12(u), for D1|1,

(5.8)

d̂11(u)d̂12(v) = f1(u, v)d̂12(v)d̂11(u) + g1(u, v)d̂12(u)d̂11(v) + h1(u, v)d̂12(u)d̂22(v), (5.9)

d̂22(u)d̂12(v) = f̃2(u, v)d̂12(v)d̂22(u) + g̃2(u, v)d̂12(u)d̂22(v) + h̃2(u, v)d̂12(u)d̂11(v). (5.10)

The explicit form of the functions appearing above is given in appendix B. In the new basis,
� is still a pseudo-vacuum:

d̂11(u)� = 
̂1(u)� = 
1(u
(1))�, d̂21(u)� = 0, (5.11)

d̂22(u)� = 
̂2(u)� = (

2(u

(1)) − ψ1(u
(1))
1(u

(1))
)
�, (5.12)

and we can use the algebraic Bethe ansatz as in the closed chain case. The transfer matrix can
be rewritten

d(u(1)) = ((−1)[1]m1k(u(1)) + (−1)[2]m2ψ1(u
(1)))d̂11(u) + (−1)[2]m2d̂22(u) ≡ d̂(u). (5.13)

Applying M creation operators d̂12(uj ) on the pseudo-vacuum we generate a Bethe vector:

�({u}) = d̂12(u1) · · · d̂12(uM)�. (5.14)

Demanding �({u}) to be an eigenvector of d̂(u) leads to a set of algebraic relations on the
parameters u1, . . . , uM , the so-called Bethe equations. The relation (5.8) between creation
operators proves the invariance (up to a function for D1|1) of the Bethe vector under the
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reordering of creation operators. This condition is useful to compute the unwanted terms from
the action of d̂(u) on �({u}). We compute the action of d̂11(u) on �({u}),

d̂11(u)�({u}) =
M∏

k=1

f1(u, uk)
̂1(u)�({u})

+
M∑

k=1

(Mk(u, {u})
̂1(uk) + Nk(u, {u})
̂2(uk))�k(u, {u}), (5.15)

�k(u, {u}) = d̂12(u1) · · · d̂12(uk → u) · · · d̂12(uM)�,

where the notation d̂12(uk → u) is used to indicate the position of d̂12(u) in the ordered
product. The form of M1(u; {u}) and N1(u; {u}) is easily computed. The other polynomials
Mk(u; {u}) and Nk(u; {u}) are then computed using the commutation relation between the
d̂12(u) operators and putting d̂12(uk) on the left. We obtain

Mk(u, {u}) = g1(u, uk)

M∏
i �=k

f1(uk, ui) and Nk(u, {u}) = h1(u, uk)

M∏
i �=k

f̃2(uk, ui).

Similarly, we compute the action of d̂22(u) on �({u}),

d̂22(u)�({u}) =
(

M∏
k=1

f̃2(u, uk)

)

̂2(u)�({u})

+
M∑

k=1

(Ok(u, {u})
̂2(uk) + Pk(u, {u})
̂1(uk))�k(u, {u}), (5.16)

Ok(u, {u}) = g̃2(u, uk)

M∏
i �=k

f̃1(uk, ui) and Pk(u, {u}) = h̃2(u, uk)

M∏
i �=k

f1(uk, ui). (5.17)

Demanding that �({u}) be an eigenvector of d̂(u) corresponds to the cancelling of the so-
called ‘unwanted terms’ carried by the vectors �k(u, {u}). In this way, we get the Bethe
equations:


̂1(uk)


̂2(uk)
= χ1(uk)

M∏
i �=k

f̃2(uk, ui)

f1(uk, ui)
, k = 1, . . . ,M. (5.18)

Remark that the r.h.s. depends only on the structure constants of the (super)algebra under
consideration, while the l.h.s. encodes the representations entering the spin chain. Then, the
eigenvalues of the transfer matrix read:

d̂(u)�({u}) = 
̂(u; {u})�({u}), (5.19)


̂(u; {u}) = ((−1)[1]m1k(u(1)) + (−1)[2]m2ψ1(u
(1)))
̂1(u)

M∏
k=1

f1(u, uk)

+ (−1)[2]m2
̂2(u)

M∏
k=1

f̃2(u, uk). (5.20)

Note that Bethe equations correspond to the vanishing of the residue of 
(u; {u}). This is the
tool used in analytical Bethe ansatz [12] to obtain Bethe equations, see e.g. [13, 15].
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6. Nested Bethe ansatz

6.1. Preliminaries

The method, called the nested Bethe ansatz (NBA), consists in a recurrent application of the
ABA to express higher rank solutions using the lower ones. It has been introduced in [6] for
the periodic case. The same method can be used for the boundary case. In this way, we can
compute the eigenvalues, eigenvectors and Bethe equations of the Dm|n model from those of
the D2 or D1|1 model. Although we are in a (tensor product of) representation(s) of Dm|n,
we will loosely keep writing dij (u) the representation of the operators dij (u), assuming that
the reader will understand that when dij (u) applies to the highest weight �, it is in fact its
(matricial) representation that is used. Another way to understand this method in an algebraic
way is to work in the coset of the Dm|n algebra by the left ideal Im+n.

We consider now the open case with general diagonal boundary condition (3.9) for K−(u),
and K+(u) of the form:

K+(u) = MK(u), with K(u) =
{

I for a+ = 0

diag(k(u), 1, . . . , 1) for a+ = 1,

where the function k(u) is defined in (5.4). The matrix K+(u) = MK(u) is the only solution
we can use to perform the NBA up to the end (see remarks 6.1 and 6.2 below). We decompose
the monodromy matrix in the following form (in the End(Cm+n) auxiliary space),

D(u) =
(

d11(u) B(1)(u)

C(1)(u) D(2)(u)

)
, (6.1)

where B(1)(u) (resp. C(1)(u)) is a row (resp. column) vector of C
m+n−1, and D(2)(u) is a matrix

of End(Cm+n−1).
Then, D(2)(u) is itself decomposed in the same way, and more generally, for a given k in

{1, . . . ,m + n − 2}, we gather the generators dkj (u), (resp. djk(u)) j = k + 1, . . . , n + m, in a
row (resp. column) vector of C

m+n−k and dij (u), i, j � k, into a matrix of End(Cm+n−k):

B(k)(u) =
m+n∑

j=k+1

et
j ⊗ dkj (u) and C(k)(u) =

m+n∑
j=k+1

ej ⊗ djk(u), (6.2)

D(k+1)(u) =
m+n∑

i,j=k+1

Eij ⊗ dij (u), (6.3)

D(k)(u) =
(

dkk(u) B(k)(u)

C(k)(u) D(k+1)(u)

)
. (6.4)

We decompose the transfer matrix in the same way:

d(u) = d(1)(u) = (−1)[1]m1k(u)d11(u) + d(2)(u),

d(k)(u) = str
(
M(k)

a D(k)(u)
) = (−1)[k]mkdkk(u) + d(k+1)(u), (6.5)

M(k) = I
(k)MI

(k). (6.6)

At each step of the recursion, we make a transformation of the operator and a shift of the
spectral parameter:

dkk(u
(k)) = d̂kk(u), B(k)

a (u(k)) = B̂(k)
a (u),

D(k+1)
a (u(k)) = D̂(k+1)

a (u) + ψk(u
(k))I(k+1)

a ⊗ d̂kk(u).
(6.7)
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The commutation relations for these operators remain similar for each k:

B̂(k)
a (u)B̂

(k)
b (v) = (−1)[k] ak+1(u

(k), v(k))

ak(u(k), v(k))
B̂

(k)
b (v)B̂(k)

a (u)R
(k+1)
ba (u, v), (6.8)

d̂kk(u)B̂
(k)
b (v) = fk(u, v)B̂b(v)d̂kk(u) + gk(u, v)B̂

(k)
b (u)d̂kk(v)

+
hk(u, v)

ek+1(v)
B̂

(k)
b (u)stra

(
M(k+1)

a R
(k+1)

ab (v, v)D̂(k+1)
a (v)R

(k+1)
ba (v, v)

)
, (6.9)

stra
(
M(k+1)

a D̂(k+1)
a (u)

)
B̂

(k)
b (v) = h̃k+1(u, v)ek+1(u)B̂

(k)
b (u)d̂kk(v)

+
g̃k+1(u, v)ek+1(u)

ek+1(v)
B̂

(k)
b (u) stra

(
M(k+1)

a R
(k+1)

ab (v, v)D̂(k+1)
a (v)R

(k+1)
ba (v, v)

)
+ f̃k+1(u, v)B̂

(k)
b (v) stra

(
M(k+1)

a R
(k+1)

ab (u, v)D̂(k+1)
a (u)R

(k+1)
ba (u, v)

)
. (6.10)

Remark 6.1. The commutation relations (6.9) and (6.10) impose the restriction on the K+(u)

matrix. The direct use of the reflection equation leads to a matrix R
(k+1)

ab (u, u) in (6.9) and

(6.10). The change R
(k+1)

ab (u, u) → R
(k+1)

ab (v, v) in the commutation relation is allowed by
equality (B.5) which shows that the dependence in u is a scalar function. If the K+(u) matrix
is not from a NABA couple, equation (B.5) cannot be used to get (6.9) and (6.10) in their
present form. Without this form, the nesting cannot be performed (see also remark 6.2).

At each step k = 1, . . . ,m + n − 1 of the nesting, we will introduce a family of Bethe
parameters ukj , j = 1, . . . ,Mk , the number Mk of these parameters being a free integer. The
partial unions of these families will be denoted as

{u�} =
�⋃

i=1

{uij , j = 1, . . . , Mi}, (6.11)

so that the whole family of Bethe parameters is {u} = {um+n−1}.

6.2. First step of the construction

From the definition of the highest weight, C(1)(u) annihilates the pseudo-vacuum � and we
can use B(1)(u) as a creation operator. However, since B(1)(u) contains only d1j (u) operators,
it is clear that we need to act on several vectors to describe the whole representation with
highest weight �. The NBA spirit is to construct these different vectors as Bethe vectors of a
Dm−1|n chain that is related to the chain we start with.

More generally, at each step k corresponding to the decomposition (6.4) of the monodromy
matrix and to the transformation of the operator of the corresponding algebra Dm−k|n, we use
(a suitable refinement of) B(k)(u) as a creation operator acting on a set of (to be defined)
vectors. These vectors are constructed as Bethe vectors of a Dm−k−1|n chain.

At the first step of the recursion, the Bethe vectors have the form

�({u(1)}) = B̂
(1)

a1
1
(u11) · · · B̂(1)

a1
M1

(
u1M1

)
F̂

(1)

a1
1 ...a1

M1

({u})�, (6.12)

F̂
(1)

a1
1 ...a1

M1

({u}) ∈ (Cm−1|n)⊗M1 ⊗ Dm−1|n, (6.13)

where F̂
(1)

a1
1 ...a1

M1

({u}) is built from operators d̂ ij (u), 2 � i � j � m + n only. Since B̂(1)(u)

belongs to C
m−1|n ⊗ Dm|n, we have introduced in the construction M1 additional auxiliary
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spaces (labelled a1
1, . . . , a

1
M1

) that are also carried by F̂
(1)

a1
1 ...a1

M1

({u}). These new auxiliary

spaces take care of the linear combination one has to do between the different generators
d̂1j (u), j = 2, . . . ,m + n, that enter into the construction.

Since F (1)
a1...aM1

({u}) is built up from operators d̂ ij (u), 2 � i � j � m + n, it obeys the
relation (proven in a more general context in theorem 3.1):

d̂11(u)F̂ (1)
a1...aM1

({u})� = 
̂1(u)F̂ (1)
a1...aM1

({u})�. (6.14)

The transfer matrix is decomposed into

d(u(1)) = m̃1(u)d̂11(u) + d̂(2)(u) with d̂(2)(u) = stra
(
M(2)

a D̂(2)
a (u)

)
(6.15)

m̃1(u) = (−1)[1]m1k(u) + str(M(2))ψ1(u
(1)). (6.16)

The action of d̂11(u) on �({u(1)}) takes the form

d̂11(u)�({u}) = 
̂1(u)

M1∏
i=1

f1(u, u1i )�({u}) +
M1∑
j=1

Mj(u; {u1})
̂1(u1j )�̂j (u, {u})

+
M1∑
j=1

Nj(u; {u1})B̂(1)
a1

(u11) · · · B̂(1)
aj

(u) · · · B̂(1)
aM1

(
u1M1

)
× d̃(2)(u1j ; {u1})F̂ (1)

a1...aM1
({u})�, (6.17)

with

Mj(u; {u1}) = g1(u, u1j )

M1∏
i �=j

f1(u1i , u1j ) and Nj(u; {u}) = h1(u, u1j )

e2(u1j )

M1∏
i �=j

f̃2(u1i , u1j ).

The action of d̂(2)(u) on �({u}) takes the form

d̂(2)(u)�({u(1)}) =
M1∏
j=1

f̃2(u, u1j )B
(1)
a1

(u11) · · · B̂(1)
aM1

(
u1M1

)
d̃(2)(u; {u1})F̂ (1)

a1...aM1
({u})�

+
M1∑
j=1

Pj (u; {u1})B̂(1)
a1

(u11) · · · B(1)
aj

(u) · · · B̂(1)
aM1

(
u1M1

)
d̃(2)(u1j ; {u1})

× F̂ (1)
a1...aM1

({u})� +
M1∑
j=1

Qj(u; {u1})
̂1(u1j )�j ({u}), (6.18)

with

Pj (u; {u1}) = g̃2(u, u1i )e2(u)

e2(u1i )

M1∏
i �=j

f̃2(u1j , u1i ),

Qj (u; {u1}) = h̃2(u, u1i )e2(u)

M1∏
i �=j

f1(u1j , u1i ),

where �j({u}) is deduced from �({u}) by the change u1j → u. These expressions
are computed as has been done in section 5: N1(u; {u1}),M1(u; {u1}), P1(u; {u1}) and
Q1(u; {u1}) are easy to compute; the other terms are obtained through a reordering of the
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operators B̂(1)(u1j ), using the reordering lemma 6.1 and the Yang–Baxter equation. We also
used the notation:

d̃(2)(u; {u1}) = stra

⎛⎝M(2)
a

−→
M1∏

j=1

R
(2)

a,aj
(u, u1j )D̂

(2)
a (u)

←−
M1∏

j=1

R
(2)
aj ,a

(u, u1j )

⎞⎠ . (6.19)

Remark 6.2. The fact that the wanted and unwanted terms contain the same operator d̃(2) (but
at different values u and u1j ) allows one to continue the nesting. In this way, the diagonalization
of this operator allows us at the same time to compute the eigenvalue and to show that the
unwanted terms cancel (when the Bethe ansatz equations are obeyed). The apparition of this
operator in the unwanted terms is directly related to the present form of the commutation
relations (6.9) and (6.10), see remark 6.1. Hence the need of a NABA couple to perform the
nesting.

As already mentioned, the calculation makes a new transfer matrix d̃(2)(u; {u1}) appear
corresponding to a Dm−1|n chain with L + M1 sites, the M1 additional sites corresponding
to fundamental representations of Dm−1|n. This interpretation is supported by theorem 3.1
which ensures that D̃(2)

a (u; {u1}) generates Dm−1|n, and that d̃(2)(u; {u1}) is indeed the transfer
matrix of an integrable spin chain. Then, if we assume that F (1)

a1...aM1
({u})� is an eigenvector

of this new transfer matrix,

d̃(2)(u; {u1})F̂ (1)
a1...aM1

({u})� = �̃(2)(u)F̂ (1)
a1...aM1

({u})�, (6.20)

we deduce

d̂11(u)�({u}) = 
̂1(u)

M1∏
i=1

f1(u, u1i )�({u})

+
M1∑
j=1

(Mj (u; {u1})
̂1(u1j ) + Nj(u; {u1})�̃(2)(u1j ))�j ({u}), (6.21)

d̂(2)(u)�({u}) = �̃(2)(u)

M1∏
j=1

f̃2(u, u1j )�({u})

+
M1∑
j=1

(Pj (u; {u1})�̃(2)(u1j ) + Qj(u; {u1})
̂1(u1j ))�j ({u}). (6.22)

Gathering these relations together, we get a first expression of the action of d(u) on �({u}).
When we cancel in this expression the unwanted terms (carried by �j({u})), we get the first
system of Bethe equations:


̂1(u1j )

�̃(2)(u1j )
= χ1(u1j )

e2(u1j )

M1∏
i �=j

f̃2(u1j , u1i )

f1(u1j , u1i )
. (6.23)

We also get a first expression of the transfer matrix eigenvalue:

d̂(1)(u)�({u}) =
⎛⎝m̃1(u)
̂1(u)

M1∏
j=1

f1(u, u1j ) + �̃(2)(u)

M1∏
j=1

f̃1(u, u1j )

⎞⎠�({u}). (6.24)

In the above relations, everything is known but the eigenvalue �̃(2)(u), introduced in (6.20),
and the explicit form of F̂

(1)

a1
1 ...a1

M1

({u}) ensuring that (6.20) is indeed satisfied.
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Thus, at the end of this first recursion step, we have ‘reduced’ the problem of computing
an eigenvector �({u}) for the transfer matrix d(u) of a Dm|n chain with L sites to the problem
of computing an eigenvector �(1)({u}) = F̂

(1)

a1
1 ...a1

M1

({u})� for the transfer matrix d̃(2)(u; {u1})
of a Dm−1|n chain with L + M1 sites.

Remark 6.3 (change of notation). To avoid too complicated a notation for the second step,
we need to slightly change the notation at the end of the first step. First, we rename the
hatted operators X̂(u) → X(u), although they still have the spectral parameter shift and the
operator transformation coming from the first step. Second, we omit the tilde on operators,
X̃(u) → X(u), keeping in mind that the new operators X(u) have M1 sites more than the one
of the previous step. In this way, we will be able to re-use the ‘hatted’ and ‘tilded’ notations
for the transformations used in the second step.

This will be the general approach at each step: at the end of step k, we will perform a
change of notation, suppressing the hats and tildes on operators, to use them again in step
k + 1.

It remains to single out the highest weights corresponding to the fundamental
representations carried by the new sites. This is done in the following way

�(1)({u}) = F (1)
a1...aM1

({u})�,

�(1)({u}) = B
(2)

a2
1
(u21; {u1}) · · · B(2)

a2
M2

(u2M2; {u1})F (2)

a2
1 ...a2

M2
({u})�(2),

(6.25)

�(2) = (
e
(1)
1

)⊗M1 ⊗ �, (6.26)

where e
(1)
1 = (1, 0, . . . , 0)t ∈ C

m−1|n and F
(2)

a2
1 ...a2

M2

({u}) is built on operators dij (u
(2); {u1}),

with j � i > 2. The operators B(2)(u; {u1}) play the role, for the Dm−1|n chain of length
L + M1, of the operators B(1)(u) for the Dm|n chain of length L. Explicitly, they are obtained
from the decomposition (6.4) of the monodromy matrix.

6.3. General step

More generally, the step k starts with the problem

d(k)(u; {uk−1})�(k−1)({u}) = �(k)(u)�(k−1)({u}), (6.27)

where d(k)(u; {uk−1}) = str(M(k)D(k)(u; {uk−1})) is the transfer matrix of a Dm−k−1|n spin
chain of length L +

∑k−1
j=1 Mj (obtained from the previous step). We recall that hats and tildes

have been suppressed, according to remark 6.3, including for the function �(k)(u). We define

�(k−1)({u}) = F
(k−1)

ak−1
1 ...ak−1

Mk−1

({u})�(k−1) = B
(k)({uk})F (k)

ak
1 ...ak

Mk

({u})�(k), (6.28)

�(k) = (
e
(k−1)
1

)⊗Mk−1 ⊗ �(k−1), (6.29)

with e
(k)
1 = (1, 0, . . . , 0)t ∈ C

m−k|n. We have introduced

B
(k)({uk}) = B

(k)

ak
1
(uk1; {uk−1}) · · · B(k)

ak
Mk

(ukMk
; {uk−1}), (6.30)

where the operators are extracted from the monodromy matrix, see equation (6.4).

Remark 6.4. In (6.30), we have indicated only the auxiliary spaces ak
j , j = 1, . . . ,Mk .

In fact, since D(k)(u; {uk−1}) is viewed as the monodromy matrix of a spin chain of length
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L +
∑k−1

j=1 Mj , the other spaces a�
j , j = 1, . . . ,M�, � < k, are now quantum spaces. Thus,

they do not appear explicitly in D(k), as the sites of the original spin chain, but obviously this
monodromy matrix (and its components) does depend on all these spaces.

We extract from d(k)(u; {uk−1}) the component dkk(u; {uk−1}):
d(k)(u; {uk−1}) = (−1)[k]mkdkk(u; {uk−1}) + str(M(k+1)D(k+1)(u; {uk−1})). (6.31)

Now we must transform the operator:

dkk(u
(k)) = d̂kk(u), B(k)

a (u(k)) = B̂(k)
a (u),

D(k+1)(u(k)) = D̂(k+1)(u) + ψk(u
(k))d̂kk(u)I(k).

(6.32)

The transfer matrix d(k)(u(k); {uk−1}) is rewritten as

d̂(k)(u; {uk−1}) = m̃k(u)d̂kk(u; {uk−1}) + str(M(k+1)D̂(k+1)(u; {uk−1})), (6.33)

m̃k(u) = (−1)[k]mk + str(M(k))ψk(u
(k)), (6.34)

and the Bethe vector:

�(k−1)({u}) = B̂
(k)

({uk})F̂ (k)

ak
1 ...ak

Mk

({u})�(k), (6.35)

B̂
(k)

({uk}) = B̂
(k)

ak
1
(uk1; {uk−1}) · · · B̂(k)

ak
Mk

(ukMk
; {uk−1}). (6.36)

Now we can compute the action of the transfer matrix on this vector. We first
commute d̂kk(u; {uk−1}) and d̂(k+1)(u; {uk−1}) = str(M(k)D̂(k+1)(u; {uk−1})) with the operator

B̂
(k)

({uk}):

d̂kk(u; {uk−1})�(k−1)({u(k)}) =
Mk∏
j=1

fk(u, ukj )B̂
(k)

({uk})d̂kk(u; {uk−1})�(k)({u})

+
Mk∑
j=1

Mj(u; {uk−1})B̂(k)

j (u; {uk})d̂kk(ukj ; {uk−1})�(k)({u})

+
Mk∑
j=1

Nj(u; {uk−1})B̂(k)

j (u; {uk})d̃(k+1)(ukj ; {uk})�(k)({u}), (6.37)

d̂(k+1)(u; {uk−1})�(k−1)({u}) =
Mk∏
j=1

f̃k+1(u, ukj )B̂
(k)

({uk})d̃(k+1)(u; {uk})�(k)({u})

+
Mk∑
j=1

Pj (u; {uk−1})B̂(k)

j (u; {uk})d̃(k+1)(ukj ; {uk})�(k)({u})

+
Mk∑
j=1

Qj(u; {uk−1})B̂(k)

j (u; {uk})d̂kk(ukj ; {uk−1})�(k)({u}), (6.38)

where we have introduced:

�(k)({u}) = F̂
(k)

ak
1 ...ak

Mk

({u})�(k),

d̃(k+1)(u; {uk}) = stra

⎛⎝M(k+1)
a

⎛⎝ −→
Mk∏

j=1

R
(k+1)

aak
j

(u, ukj )

⎞⎠ D̂(k+1)
a (u; {uk−1})

⎛⎝ ←−
Mk∏

j=1

R
(k+1)

ak
j a

(u, ukj )

⎞⎠⎞⎠ .
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The functions Mj,Nj , Pj and Qj are the same as in the first step (section 6.2) but with indices
1 → k on functions and Bethe roots. We use the following reordering lemma:

Lemma 6.1. For each k = 1, . . . ,m + n − 1 and j = 1, . . . ,Mk , we have

B̂
(k)

({uk}) = B̂
(k)
j (ukj )B̂

(k)
1 (uk1) · · · B̂(k)

j−1(uk,j−1)B̂
(k)
j+1(uk,j+1) · · · B̂(k)

Mk

(
ukMk

)
×

−→
j−1∏
i=1

(−1)[j ]
aj+1

(
u

(k)
ki , u

(k)
kj

)
aj

(
u

(k)
ki , u

(k)
kj

) R
(k+1)
j i (uki, ukj ), (6.39)

where the dependence in {uk−1} has been omitted in B̂(k)
p .

Proof. Direct calculation using the commutation relations (6.8)–(6.10). �

We now compute the action of d̂kk(u; {uk−1}) and d̃(k+1)(u; {uk}) on F̂ (k)({u})�(k). These
actions follow from theorem 3.1. For d̂kk(u; {uk−1}) we have

d̂kk(u; {uk−1})F̂ (k)({u})�(k) = 
̂k(u; {uk−1})F̂ (k)({u})�(k). (6.40)

It remains to do the same for d̃(k+1)(u; {uk}). It corresponds to a new monodromy matrix

D̃(k+1)
a (u; {uk}) =

−→
Mk∏

j=1

R
(k+1)

aak
j

(u, ukj )D̂
(k+1)
a (u; {uk−1})

←−
Mk∏

j=1

R
(k+1)

ak
j a

(u, ukj ). (6.41)

It also satisfies the reflection equation, see theorem 3.1, so that the problem is integrable, and
defines a Dm−k|n spin chain, with L +

∑k
j=1 Mj sites.

We get a new eigenvalue problem:

d̃(k+1)(u; {uk})�(k)({u}) = �̃(k+1)(u)�(k)({u}). (6.42)

Assuming the form (6.42), we can show, following the same lines as in the first step, that
�(k−1)({u}) is a transfer matrix eigenvector provided the kth system of Bethe equations,


̂k(ukj ; {uk−1})
�̃(k+1)(ukj ; {uk})

= χk(ukj )

ek+1(ukj )

Mk∏
i �=j

f̃k+1(ukj , uki)

fk(ukj , uki)
, (6.43)

is obeyed. We also get an expression for �̂(k)(u), the eigenvalue of d̂(k)(u):

�̂(k)(u) = m̃k(u)

Mk∏
j=1

fk(u, ukj )
̂k(u; {uk−1}) +
Mk∏
j=1

f̃k+1(u, ukj )�̃
(k+1)(u; {uk}). (6.44)

6.4. End of induction

To end the recursion, we use the m + n = 2 case and remark that

�̂(n+m)(u) = 
̂n+m(u, {um+n−2}). (6.45)

Using the shift notation, u(k...l) = (· · · (u(k))(k+1) · · ·)(l), for k � l, we deduce from (6.45) that
�̂ is expressed in terms of 
̂:

�̂(k+1)(u(k+2...n+m−1)) = m̃k+1(u
(k+2...n+m−1))
̂k+1(u

(k+2...n+m−1); {uk})Fk+1(u)

+
m+n−1∑
�=k+2

m̃�(u
(�+1...n+m−1))
̂�(u

(�+1...n+m−1); {u�−1})F�(u)

�−1∏
p=k+1

F̃p(u)

+ (−1)[m+n]mm+n
̂m+n(u; {um+n−2})
m+n−1∏
p=k+1

F̃p(u), (6.46)
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where we have introduced

F�(u) =
M�∏
j=1

f�(u
(�+1...n+m−1), u�j ),

F̃�(u) =
M�∏
j=1

f̃�+1(u
(�+1...n+m−1), u�j ), � ∈ {k . . . m + n − 1},

with the convention u(k...l) = u if k > l. It remains to compute the values 
̂k(u; {uk−1}):
Lemma 6.2. The eigenvalue 
̂k(u; {uk−1}) of d̂kk(u; {uk−1}) on �(k−1) is given by


̂k(u; {uk}) = 
̂k(u)

k−2∏
�=1

M�∏
j=1

1

f̃�+1(u(�+1...k), u�j )

= 
̂k(u)

k−2∏
�=1

1

F̃�(u(k+1...m+n−1))
, k = 1, . . . ,m + n, (6.47)

where we have used d̂kk(u)� = 
̂k(u)� with


̂k(u) = 
k(u
(1...k)) −

k−1∑
i=1

q2(k−1−i)−4
∑k−1

l=i+1[l]ψi((u
(k))(i))
i(u

(1...k)) (6.48)

= Kk(u
(1...k))λk(u

(1...k))λ′
k(u

(1...k)). (6.49)

Proof. First we introduce a useful property between coproduct and supertrace:

stra
(
�
(
D(k)

a (u)
)) = �

(
stra

(
D(k)

a (u)
))

. (6.50)

It is obvious because supertrace and coproduct do not act in the same space. We recall the
fundamental representation evaluation map for the Am−k+1|n algebra:

π(k)
a :

Am−k+1|n ⊗ End(Cm|n) → End(Cm−k+1|n) ⊗ End(Cm|n)

T (k)(u) �→ R
(k)

12 (u, a)

(T −1(ι(u)))(k) �→ R
(k)
21 (u, a).

(6.51)

We also need the representation of Am−k+1|n induced by the inclusion Am−k+1|n ↪→
Am−p+1|n, p < k. From the identity

T (k)(u) = I
(k)(T (p)(u(p+1...k)))I(k), (6.52)

we can deduce the form of π
(p)
v ((T (k)(u)) in the fundamental representation of Am−p+1|n:(

id ⊗ π(p)
v

)
(T (k)(u)) = I

(k)
1

(
id ⊗ π(p)

v

)
(T (p)(u(p+1...k)))I

(k)
1 = I

(k)
1 R

(p)

12 (u(p+1...k), v)I
(k)
1

= R
(k,p)

a,b (u(p+1...k), v). (6.53)

The last equality is just the definition of R
(k,p)

a,b (u(p+1...k), v), see (2.15).
Hence, using theorem 3.3, we can rewrite the monodromy operator D̃(k+1)

a (u; {uk−1}) as

D̃(k+1)
a (u; {uk−1}) =

⎛⎝ −→
Mk∏

j=1

R
(k+1)

aak
j

(u, ukj )

⎞⎠ D̂(k+1)
a (u; {uk−1})

⎛⎝ ←−
Mk∏

j=1

R
(k+1)

ak
j a

(u, ukj )

⎞⎠
= (

id ⊗ (
π(k+1)

uik

)⊗Mk
i=1
) ◦ �Mk

(
D̂(k+1)

a (u; {uk−1})
)
, (6.54)
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while the operator d̃
(k)
kk (u) takes the form:

d̃
(k)
kk (u; {uk−1}) = (

id ⊗ ((
π(p+1)

upi

)⊗Mp

i=1
))⊗k−1

p=1
) ◦ �

∑k
p=1 Mp

(
d̂

(k)
kk (u)

)
. (6.55)

Now acting on the highest weight �(k−1) and using lemma 3.2, we find the following result:

d̃
(k)
kk (u)�(k−1) = (

id ⊗ ((
π(p+1)

uip

)⊗Mp

i=1
))⊗k

p=1
)(

t
(k)
kk (u)t

′(k)
kk (ι(u))

)⊗∑k
p=1 Mp

⊗ d̂
(k)
kk (u)�(k−1).

(6.56)

We have from the definition of R matrices and �(k−1),

π(p+1)
uip

(
t
(k)
kk (u)t

′(k)
kk (ι(u))

)
�(k−1) = b(u(p+1...k), uip)b̄(u(p+1...k), uip)

ap+1(u(p+1...k), uip)āp+1(u(p+1...k), uip)
�(k−1),

π(k)
uik

(
t
(k)
kk (u)t

′(k)
kk (ι(u))

)
�(k−1) = �(k−1),

(6.57)

that leads to the result (6.47). The eigenvalue (6.48) is computed directly from theorem 3.1.
To obtain the form (6.49), one uses the equalities (4.38), (4.39) and the identity (B.10). �

From the expression given in lemma 6.2, one deduces that

�̂(k+1)(u(k+2...n+m−1)) =
{

m̃k+1(u
(k+2...n+m−1))
̂k+1(u

(k+2...n+m−1))Fk+1(u)

+
m+n−1∑
�=k+2

m̃�(u
(�+1...n+m−1))
̂�(u

(�+1...n+m−1))Fl(u)F̃l−1(u)

+ (−1)[m+n]mm+n
̂m+n(u(n+m−1))F̃m+n−1(u)

}
1∏k−1

�=1 F̃�(u)
. (6.58)

Let us note that since b(u, u) = 0, equation (6.58) implies that

�̂(k+1)(u�j ) = 0, for j = 1, . . . , M�; � = 1, . . . , k − 1, (6.59)

�̂(k+1)(ukj ) = m̃k+1(ukj )
̂k+1(ukj )Fk+1
(
u

(k+2...n+m−1)
kj

) k−1∏
�=1

1

F̃�+1
(
u

(k+2...n+m−1)
kj

) ,
for j = 1, . . . ,Mk. (6.60)

6.5. Final form of Bethe vectors, eigenvalues and equations

Using expressions (6.59), (6.60), and the value of 
̂k(u; {u(k)}) given in lemma 6.2, one can
recast the Bethe equations (6.43) in their final form:


̂k(ukj )


̂k+1
(
u

(k+1)
kj

) = m̃k+1
(
u

(k+1)
kj

)
χk(ukj )

ek+1(ukj )

Mk−1∏
i=1

1

f̃k
(
u

(k)
kj , uk−1,i

) Mk∏
i �=j

f̃k+1(ukj , uki)

fk(ukj , uki)

×
Mk+1∏
i=1

fk+1
(
u

(k+1)
kj , uk+1,i

)
, j = 1, . . . ,Mk, k = 1, . . . ,m + n − 1, (6.61)

with the convention M0 = Mm+n = 0. The number of parameter families is m + n − 1.
We checked that using the weights (4.3), (4.5) and the functions given in appendix B, one
reproduces the BAEs already computed, in e.g. [6, 12, 17], and also the general forms given in
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[13–15]. In particular, for the fundamental weight μ = (1, 0, . . . , 0), we recovers the BAEs
for a spin chain with fundamental representations. For instance, for the case of Ûq(2|2), which
may be of some relevance in the context of AdS/CFT correspondence, one obtains (for L sites
with evaluation parameter bi , a+ = 1 and a− = 2)

c+u1iq
1
2 − q

− 1
2

c+u1i

u1i

c+
q

1
2 − c+

u1i
q− 1

2

L∏
i=1

(
u1i

bi
q

1
2 − bi

u1i
q− 1

2
)(

u1ibiq
1
2 − q

− 1
2

biu1i

)
(

u1i

bi
q− 1

2 − bi

u1i
q

1
2
)(

u1ibiq
− 1

2 − q
1
2

biu1i

)
=

M1∏
j �=i

(
u1i

u1j
q − u1j

u1i
q−1

)(
u1iu1j q − q−1

u1iu1j

)( u1j

u1i
q − u1i

u1j
q−1

)(
u1iu1j q−1 − q

u1iu1j

)
×

M2∏
j=1

( u2j

u1i
q− 1

2 − u1i

u2j
q

1
2
)(

u2ju1iq
− 1

2 − q
1
2

u2j u1i

)
( u2j

u1i
q− 1

2 − u2j

u1i
q

1
2
)(

u2ju1iq
1
2 − q

− 1
2

u2j u1i

) , i = 1, . . . ,M1

u2
2iq

−1 − c2
−q

u−2
2i − c2−q2

(−1)M2+1 =
M1∏
j=1

(
u2i

u1j
q− 1

2 − u1j

u2i
q

1
2
)(

u1ju2iq
− 1

2 − q
1
2

u1j u2i

)
(

u2i

u1j
q

1
2 − u1j

u2i
q− 1

2
)(

u1ju2iq
1
2 − q

− 1
2

u1j u2i

)
×

M3∏
j=1

( u3j

u2i
q− 1

2 − u2i

u3j
q

1
2
)(

u3ju2iq
1
2 − q

− 1
2

u3j u2i

)
( u3j

u2i
q

1
2 − u3j

u2i
q− 1

2
)(

u3ju2iq
− 1

2 − q
1
2

u3j u2i

) i = 1, . . . ,M2

−1 =
M2∏
j=1

(
u3i

u2j
q

1
2 − u2j

u3i
q− 1

2
)(

u2ju3iq
1
2 − q

− 1
2

u2j u3i

)
(

u3i

u2j
q− 1

2 − u2j

u3i
q

1
2
)(

u2ju3iq
− 1

2 − q
1
2

u2j u3i

)
×

M3∏
j �=i

(
u3i

u3j
q−1 − u3j

u3i
q
)(

u3iu3j q
−1 − q

u3iu3j

)
( u3j

u3i
q−1 − u3i

u3j
q
)(

u3iu3j q − q−1

u3iu3j

) i = 1, . . . ,M3.

The transfer matrix eigenvalues are obtained from (6.58), remarking that 
(u(1)) = �̂(1)(u):


(u(1...m+n−1)) =
m+n∑
k=1

m̃k(u
(k+1...m+n−1))
̂k(u

(k+1...m+n−1))

×
Mk∏
j=1

fk(u
(k+1...m+n−1), ukj )

Mk−1∏
j=1

f̃k(u
(k+1...m+n−1), uk−1j ), (6.62)

m̃m+n(u) = (−1)[m+n]mm+n.

The Bethe equations (6.61) ensure that 
(u) is analytical, in accordance with the analytical
Bethe ansatz. The Bethe vectors take the form:

�({u}) = B̂(1)
a1

(u11) · · · B̂(1)
aM1

(
u1M1

)
F̂ (1)

a1...aM1
({u})�,

= B̂
(1)

a1
1
(u11) · · · B̂(1)

a1
M1

(
u

(1)
M1

)̂̃B(2)

a2
2
(u21) · · · ̂̃B(2)

a2
M2

(u1M2) · · · ̂̃B(n+m−1)

an+m−1
M

(un+m−1,M)�(n+m−1).

(6.63)

We recall the notation M = ∑n+m−1
j=1 Mj,�

(k) = (
e
(k−1)
1

)⊗Mk−1 ⊗ �(k−1), �(1) = � and the
auxiliary spaces are indicated according to remark 6.4.
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7. Bethe vectors

We present here a generalization to open spin chains of the recursion and trace formulae for
Bethe vectors, obtained in [35, 36] (see also [16]) for closed spin chains. To our knowledge,
this presentation for open spin chains is entirely new.

7.1. Recursion formula for Bethe vectors

From expression (6.63), we can extract a recurrent form for the Bethe vectors,

�n+m
M ({u}) = B̂

(1)

a1
1
(u11) · · · B̂(1)

a1
M1

(
u1M1

)
�̂

(1)
{u1}

(
�n+m−1

M−M1
({u(>1)})

)
, (7.1)

�̂
(1)
{u1} = v(2) ◦ (τ ⊗ π(2)

u1M1
⊗ · · · ⊗ π(2)

u11

) ◦ �(M1), (7.2)

where πa is the fundamental representation evaluation homomorphism normalized as in (6.51),
v(k) is the application of the highest weight vector e

(k−1)
1 :

v(k)(X�(k−1)) = X
(
e
(k−1)
1

)⊗Mk−1 ⊗ �(k−1) = X�(k), (7.3)

and τ is the morphism

τ :
Dm−1|n → Dm|n/I1

dij (u) �→ d̂ i+1,j+1(u)
. (7.4)

If we denote by [.]m|n the grading used in the Dm|n superalgebra, the mapping τ corresponds
to the identification [j ]m−1|n = [j + 1]m|n.

Remark that since all the operators in (7.1) apply on the pseudo-vacuum, one can consider
the operators built from τ as belonging to Dm|n instead of Dm|n/I1. So by induction we build
the Bethe vectors from Dm|n generators and R-matrices in auxiliary spaces.

7.2. Supertrace formula for Bethe vectors

We can also write the Bethe vector into a supertrace formula and prove the equivalence with
the recursion relation discussed above.

Theorem 7.1. The Bethe vector (7.1) admits a supertrace formulation. We denote by A1; . . . ;
Am+n−1 the ordered sequence of auxiliary spaces a1

1, . . . , a
1
M1

; a2
1, . . . , a

2
M2

; . . . ;
am+n−1

1 , . . . , am+n−1
Mm+n−1

.

�n+m
M ({u}) = (−1)G1 strA1...Am+n−1

(
m+n−1∏

i=1

D̂
(i)

Ai
({ui})E �⊗Mn+m−1

n+m,n+m−1 ⊗ · · · ⊗ E
�⊗M1
21

)
�, (7.5)

where

D̂
(i)

Ai
({ui}) =

Mi∏
j=1

R(i)

A<i ,a
i
j
({ui−1}, uij )D̂

(i)

ai
j

(uij )R(i)

ai
j ,A<i

({ui−1}, uij ), (7.6)

Gk =
n+m−2∑

i=k

Mi(Mi + 1)

2
[i], (7.7)

R(i)

A<i ,a
i
j
({ui−1}, uij ) =

−→∏
b<i

−→
Mb∏
c=1

R
(i,b)

ai
j a

b
c

(
uij , u

(b+1...i−1)
bc

)
, (7.8)
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R(i)

ai
j ,A<i

({ui−1}, uij ) =
←−∏
b<i

←−
Mb∏
c=1

R
(b,i)

ab
c ai

j

(
u

(b+1...i−1)
bc , uij

)
. (7.9)

Proof. Equivalence is proven along the following lines. Starting from expression (7.5), we
can extract the M1 auxiliary spaces corresponding to the first step of the nested Bethe ansatz:

�n+m
M ({u}) = (−1)

M1(M1+1)

2 [1] strA1

[
D̂

(1)

A1
({u1}) × (−1)G2

× strA2...Am+n−1

(
m+n−1∏

i=2

D̂
(i)

Ai
({ui})E �⊗Mn+m−1

n+m,n+m−1 ⊗ · · · ⊗ E
�⊗M2
32

)
⊗ E

�⊗M1
21

]
⊗ �.

Using the isomorphism End(Cm+n) ∼ C
m+n ⊗ C

m+n, one can rewrite, for any A(v), the
supertrace with an E21 matrix as

str(D̂(1)(u)A(v)E21) =
m+n∑
j=1

(
et

1 ⊗ et
j ⊗ d̂

(1)
1j (u)

)
A(v)(e1 ⊗ e2 ⊗ 1),

= (−1)[1]+[1][A]B̂(1)(u)A(v)(e2 ⊗ 1). (7.10)

Using formula (7.10) for the auxiliary spaces 1, . . . ,M1, and remarking that the case ja = 1
for a = 1, . . . ,M1 does not contribute, we obtain

�n+m
M ({u}) = B̂

(1)

a1
1
(u11) · · · B̂(1)

a1
M1

(
u1M1

)
(−1)G2

× strA2...Am+n−1

(
m+n−1∏

i=2

D̂
(i)

Ai
({ui})E �⊗Mn+m−1

n+m,n+m−1 ⊗ · · · ⊗ E
�⊗M2
32

)
�(2). (7.11)

To end the proof, we remark that

(−1)G2 strA2...Am+n−1

(
m+n−1∏

i=2

D̂
(i)

Ai
({ui})E �⊗Mn+m−1

n+m,n+m−1 ⊗ · · · ⊗ E
�⊗M2
32

)
�(2)

= �̂
(1)
{u1}

(
�n+m−1

M−M1
({u(>1)})

)
which allows us to recover the form (7.2). �

Remark 7.1 (conjecture). Although theorem 7.1 has been proven only when K+(u) belongs
to a NABA couple, expression (7.5) does not depend on K+(u): we conjecture that this
expression is valid for any couple of diagonal K±(u) matrices. This conjecture is supported
by the fact that the analytical Bethe ansatz is known to work for any diagonal boundary
matrices.

7.3. Examples of Bethe vectors

To illustrate the supertrace formula, we present here some explicit examples of Bethe vectors
associated with small numbers of excitations.

Bethe vectors of Dm|n with n + m = 2 and M1 = M . We reproduce here the well-known case
obtained with algebraic Bethe ansatz (see also section 5).

�2
M({u}) = (−1)M[2]d̂

(1)
12 (u11) · · · d̂(1)

12 (u1M)�. (7.12)

Note that this expression is also valid when n + m > 2, setting M1 = M and Mk = 0, k > 1.
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Bethe vectors of Dm|n with n + m = 3,M1 = 1 and M2 = 1.

�3
1,1({u}) = (−1)[1]+[2]+[3] b(u11, u21)

a2(u11, u21)
d̂

(1)
12 (u11)d̂

(2)
23 (u21)�

+ (−1)[1]+[2]+[3] b(u21, u11)

a2(u21, u11)

w32(u11, u21)

a2(u11, u21)
d̂

(1)
13 (u11)d̂

(2)
22 (u21)�

+ (−1)[1] w23(u21, u11)

a2(u21, u11)

b(u11, u21)

a2(u11, u21)
d̂

(1)
13 (u11)d̂

(2)
33 (u21)�.

Again, this expression is also valid when n + m > 3, setting Mk = 0, k > 2.
We also computed the Bethe vectors corresponding to M1 = M2 = M3 = 1 and Mk = 0,

k > 3. Their expression is rather long, with 11 different terms: we do not write it here
explicitly.

8. Conclusion

In this paper, we have proposed a global treatment of the NBA for universal transfer matrices
of open spin chains with NABA couple of boundary matrices. The modification of the nested
Bethe ansatz applicable to diagonal boundary matrices that do not form a NABA couple
remains to be found. Since the analytical Bethe ansatz can be performed in this case, such a
refinement should be possible.

We have computed a trace formula for the Bethe vector of the open chain. This formulation
could be a starting point for the investigation of the quantized Knizhnik–Zamolodchikov
equation following the work [37]. For such a purpose, the coproduct properties of Bethe
vectors for open spin chains remain to be studied. Defining a scalar product and computing
the norm of these Bethe vectors is also a point of fundamental interest.

From a different point of view, this trace formula and the mapping between the reflection
algebras of different sizes could be the starting point for the construction of a Drinfeld’s current
realization [21] for the reflection algebra in the spirit of [38] on the current realization of the
Bethe vector for the periodic case.

The case of open spin chains with general boundary matrices is also a subject of
fundamental interest. A deeper understanding of representations of reflection algebras when
the K matrix is not diagonal may be of some help. Alternatively, a different approach using
another presentation of the reflection algebra could be the clue to go beyond the results obtained
so far. Some works have been done for the m + n = 2 case in [7], but the general treatment
for universal transfer matrices remains an open problem. The functional approach developed
in [8] for m + n = 2 also deserves a generalization, both for universal transfer matrices, and
for bigger algebras.

Appendix A. R and M matrices

We recall the general form of the R-matrices we used in the paper [16]. Note we use a more
compact form:

R12(u, v) = b(u, v)I ⊗ I +
m+n∑
i,j=1

wij (u, v)Eij ⊗ Eji, (A.1)

wij (u, v) =
{
ai (u, v) − b(u, v) for i = j

cij (u, v) otherwise,
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R̄12(u, v) = R12(u, ι(v)) = b̄(u, v)I ⊗ I +
m+n∑
i,j=1

w̄ij (u, v)Eij ⊗ Eji. (A.2)

The functions involved in these expressions are given by (with the convention Y (m) ≡
Y (m|0), Ûq(m) ≡ Ûq(m|0) and [b] = 0,∀ b, in these two cases):

For Y (m|n):

b(u, v) = u − v; aa(u, v) = u − v − (−1)[a]h̄ and wab(u, v) = −(−1)[b]h̄ (A.3)

b̄(u, v) = u + v; āa(u, v) = u + v − (−1)[a]h̄ and w̄ab(u, v) = −(−1)[b]h̄. (A.4)

For Ûq(m|n):

b(u, v) = u

v
− v

u
; aa(u, v) = u

v
q1−2[a] − v

u
q2[a]−1 (A.5)

and wab(u, v) = (−1)[b](q − q−1)
(u

v

)sign(b−a)

, a �= b (A.6)

b̄(u, v) = uv − 1

uv
; āa(u, v) = uvq1−2[a] − 1

uv
q2[a]−1 (A.7)

and w̄ab(u, v) = (−1)[b](q − q−1)(uv)sign(b−a), a �= b. (A.8)

The matrix M is a diagonal matrix:

M =
m+n∑
i=1

miEii with

{
mi = 1 for Y (m|n)

mi = qm−n−2k+1q−2[k]+4
∑k

i=1[i] for Ûq(m|n).
(A.9)

Appendix B. Functions appearing in NBA

The functions are constructed from the three functions appearing in the R-matrix, whose
explicit forms are given in equations (A.3)–(A.8) above:

fi (u, v) = ai (v, u)b̄(u(i), v(i))

b(v, u)b̄(u, v)
, f̃i+1(u, v) = ai+1(u, v)āi+1(u, v)

b(u, v)b̄(u, v)

gi (u, v) = ci−1i (u, v)b̄(v(i), v(i))

b(u, v)b̄(v, v)
, g̃i+1(u, v) = −(−1)[i]+[i+1] ck+1k(u, v)āk+1(u, u)

b(u, v)b̄(u, u)

hi (u, v) = − c̄i−1i (u
(i), v(i))

b̄(u, v)
, h̃i+1(u, v) = c̄i+1i (u

(i), v(i))āi+1(u, u)b̄(v(i), v(i))

b̄(u, u)b̄(v, v)b̄(u, v)
.

(B.1)

We also use (presented here for Am|n = Ûq(m|n); for Am|n = Y (m|n) one has to set q = 1 in
the relations below)

ψi(u) = c̄i+1i (u, u)

āi (u, u)
(B.2)

χk(u) =

⎧⎪⎪⎨⎪⎪⎩
−q2[k]−1 b̄(u, u)

b̄(u(k), u(k))
ηk(u, c+) for k = 1 and a = 1

−q2[k]−1 b̄(u, u)

b̄(u(k), u(k))
else

(B.3)
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ηk(u, c+) = b(̃c+, u
(k+1))

b(̃c+, u(k+1))
(B.4)

ek(u)I
(k)
b = tra

(
M(k)

a R̄
(k)

ab (u, u)R
(k)
ba (u, u)

)
= q−k+1q−2n−2

∑m+n

i=k [i]+4
∑m+n

i=1 [i](−1)[k] b̄
(
u(k...m+n), u(k...m+n)

)
āk(u, u)

I
(k)
b (B.5)

m̃k(u) = q1−2[k] āk+1(u, u)ek+1(u)

b̄(u, u)
for k �= 1. (B.6)

The following useful relations are used in the paper:

b(u, v)ai (u
(j), v(j)) = ai (u, v)aj (u, v) − wij (u, v)wji(u, v), i �= j, (B.7)

b(u, v)wij (u
(k), v(k)) = wij (u, v)ak(u, v) − wik(u, v)wkj (u, v), i > j > k,

b(u(i), v(i)) = ai (u, v),
(B.8)

aj (u, v) − wij (u, v) = b(u, v)qsiq(j−i)(−1+2[j ]), (B.9)

q2−4[i]ψi−1(u
(i−1)) = ψi−1(u

(i−1,i)) − ψi−1(u
(i−1,i))ψi(u

(i)). (B.10)
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